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Abstract Network design problems arise in a wide range of applied areas
including telecommunications, computer networks, and transportation. In this
paper, we address the following discrete capacitated multi-terminal network
design problem. Given a connected digraph G = (V, A), a set of L potential
facilities to be installed on each arc, and a set of K multi-terminal (non-simulta-
neous) commodity flow requirements, the problem is to find a set of facilities to
install in order to route the K nonsimultaneous flows while minimizing the total
fixed plus variable costs. We describe an exact procedure for solving this prob-
lem based on Benders decomposition. Our algorithm includes several features
that significantly improve the efficiency of the basic approach. Computational
results attest to the efficacy of the proposed algorithm, which can solve medium-
to large-scale problems to optimality.
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1 Introduction

Network design problems arise in a rich variety of applications within the
domains of telecommunications, computer networks, and transportation. In
this paper, we address the following discrete capacitated multi-terminal net-
work design problem. We are given a (weakly) connected digraph G = (V, A)

(i.e., the underlying undirected graph is connected), with |V| = n and |A| = m,
a set of L of potential facilities to be installed on each arc, and a set of K
non-simultaneous multi-terminal commodity flow requirements. Each facility
l (l = 1, . . . , L) is capacitated by an upper bound ul on the amount of flow that
it can process. Associated with each commodity k (k = 1, . . . , K) is a requested
flow value dk that must be routed between a specified source sk and a specified
sink tk. The design cost for each facility l installed on arc (i, j) is f l

ij ≥ 0 and

the variable cost per unit of commodity k is ck
ij ≥ 0. The problem is to install

a set of facilities on each edge as desired such that the K flows can be routed
non-simultaneously at a minimum total fixed (design) plus variable (flow) costs.
We refer to this problem as the Fixed Charge Network Flow Problem with
Multiple Facilities (FCNFMF). An application of the FCNFMF arises in agri-
cultural irrigation systems in arid environments as follows. Given a set of K
parcels of land that share a common source of water s0 for irrigation purposes.
Each parcel k (k = 1, . . . , K), belongs to a different grower and requires a water
flow of value dk that must be routed through a pipe network to a specified sink tk.
Given that the region suffers from a constant water deficit, local water author-
ities allocate irrigation rights to the K growers in turn. The pipes required for
designing the irrigation network are available in L different sizes and costs. An
important component of the irrigation network design process is the selection of
the sizes of the various pipes to be installed so that the flow demand is satisfied
while the total installation and operating costs are minimized. Other applica-
tions arise in the context of designing multi-terminal communication networks
for K users that must at least sustain each user’s requirement under dedicated
service [7].

The FCNFMF belongs to an important class of network design problems
where a trade-off between installation and operating costs is targeted. These
problems are particularly attractive because, on one hand, they are notoriously
difficult, and on the other hand, they are relevant to a large number of important
practical applications in telecommunications, transportation, logistics, location,
and production planning. We refer the reader to Magnanti and Wong [13],
Minoux [15] and Balakrishnan et al. [2] for general surveys on fixed-charge
network design problems. To the best of our knowledge, the FCNFMF has
never been addressed in the literature in the foregoing general form. However,
many important special cases have been investigated in numerous papers. In
particular, if there is just one commodity to be routed between a specified pair
of nodes (i.e, K = 1), and just one facility type that might be installed (i.e,
L = 1), then the problem reduces to the well-known fixed charge network
flow (FCNF) problem. This problem was investigated in the pioneering papers
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of Hirsch and Dantzig [8] and Murty [17], who proposed exact optimization
approaches. However, most of the subsequent contributions have dealt with
approximate solution strategies [5,9–11]. It is noteworthy that if G is a bipar-
tite graph, then the FCNF reduces to the so-called fixed charge transportation
problem (FCT) (see [12], and the references therein). A further important,
but significantly easier, variant of the FCNFMF is the multi-terminal (non-
simultaneous) single-commodity synthesis problem, which has been studied by
Gomory and Hu [7]. In this problem, a network needs to be designed that can
non-simultaneously sustain some K required single commodity flows. However,
no variable flow costs are considered and the design costs vary continuously,
where the capacities to be installed are continuous variables. More precisely,
for each arc (i, j) ∈ A, if yij is the capacity assigned to (i, j) then the corre-
sponding design cost is γijyij, where γij is the cost per unit capacity. The authors
develop a linear programming approach with a constraint generation scheme
to solve this problem. Also, it is noteworthy that in the case where the K flows
must be routed simultaneously, the problem turns out to be a multicommodity
network design problem [16]. Moreover, [14] has investigated the problem of
non-simultaneous routing of K muticommodity flows where both installation
and operating costs are minimized. We refer to [4] for a recent and exhaustive
review of various multicommodity network design problems.

In this paper, we describe an efficient implementation of Benders decomposi-
tion [3] for solving the FCNFMF. Since its discovery more than four decades ago,
Benders decomposition has been applied to numerous large-scale mixed-integer
linear programs. In particular, we cite the seminal application of Geoffrion and
Graves [6] on the design of multi-stage distribution networks.

The remainder of this paper is organized as follows. In Sect. 2, we present
two valid mathematical programming formulations for the FCNFMF. In Sect. 3,
we discuss a tailored Benders decomposition, which is improved in Sect. 4
through the use of several enhancements. In Sect. 5, we report the results of our
computational experiments. Finally, some concluding remarks are provided in
the last section.

Throughout the paper we shall conform with the following notation. For a
node subset W ⊂ V, we define δ+(W) = {(i, j) ∈ A : i ∈ W and j ∈ V \W}, and
u(W) as the total capacity of the arcs in δ+(W). For simplicity, δ+({i}) is denoted
δ+(i). Similarly, δ−(W) = {(i, j) ∈ A : j ∈ W and i ∈ V \W}. Also, we define
v+(W) = {j ∈ V \W : (i, j) ∈ δ+(W)} and v−(W) = {i ∈ V \W : (i, j) ∈ δ−(W)}.

2 Mathematical programming formulations

A natural mixed-integer programming formulation of the problem can be con-
structed using continuous flow variables xk

ij for each arc (i, j) ∈ A and each

commodity k (k = 1, . . . , K), and binary variables yl
ij for each arc (i, j) ∈ A and

each facility l (l = 1, . . . , L), representing whether or not facility l is installed
on arc (i, j). This yields the following model.
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FCNFMF: Minimize
K∑

k=1

∑

(i,j)∈A
ck

ijx
k
ij +

L∑

l=1

∑

(i,j)∈A
f l
ijy

l
ij (1)

subject to:

∑

j:(i,j)∈A

xk
ij −

∑

j:(j,i)∈A

xk
ji =

⎧
⎨

⎩

dk if i = sk
0 if i ∈ V \ {sk, tk},
−dk if i = tk

∀i ∈ V,∀ k = 1, . . . , K, (2)

L∑

l=1

yl
ij ≤ 1, ∀(i, j) ∈ A, (3)

xk
ij ≤

L∑

l=1

uly
l
ij, ∀(i, j) ∈ A, k = 1, . . . , K, (4)

xk
ij ≥ 0, ∀(i, j) ∈ A, k = 1, . . . , K, (5)

yl
ij ∈ {0, 1}, ∀(i, j) ∈ A, l = 1, . . . , L. (6)

This formulation is self-explanatory and is a straightforward extension of
the arc-based formulation of the fixed charge network flow problem. A sec-
ond formulation, which will be referred to as the cut-based formulation, is
derived from the well-known max-flow-min-cut theorem [3]. Indeed, an imme-
diate consequence of this theorem is that a necessary and sufficient condition
for a feasible flow of value dk between sk and tk is that for each cut δ+(W),
with a corresponding installed capacity u(W), and induced by a subset W ⊂ V
satisfying sk ∈W and tk ∈ V̄ ≡ V \W, we have

u(W) ≥ dk. (7)

Now, assume that there are λk different cuts in G separating sk and tk and
denote by Wk

p(p = 1, . . . , λk) the corresponding subsets. Therefore, it follows
from (7) that the set of installed facilities is feasible for commodity k if and
only if

∑

(i,j)∈δ+(Wk
p )

L∑

l=1

uly
l
ij ≥ dk, ∀p = 1, . . . , λk. (8)

Hence, an alternative valid formulation of the problem is given as follows,
which is stated in a naturally decomposed form (in lieu of a consolidated opti-
mization model) for the sake of convenience in developing a Benders approach
in the sequel.

Minimize
L∑

l=1

∑

(i,j)∈A

f l
ijy

l
ij +

K∑

k=1

gk(y) (9)
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subject to

∑

(i,j)∈δ+(Wk
p )

L∑

l=1

uly
l
ij ≥ dk, ∀p = 1, . . . , λk, k = 1, . . . , K, (10)

L∑

l=1

yl
ij ≤ 1, ∀(i, j) ∈ A, (11)

yl
ij ∈ {0, 1}, ∀(i, j) ∈ A, l = 1, . . . , L, (12)

where for each k = 1, . . . , K, we have

gk(y) ≡Minimum
∑

(i,j)∈A

ck
ijx

k
ij (13)

subject to:

∑

j:(i,j)∈A

xk
ij −

∑

j:(j,i)∈A

xk
ji =

⎧
⎨

⎩

dk if i = sk,
0 if i ∈ V \ {sk, tk},
−dk if i = tk,

∀i ∈ V, (14)

xk
ij ≤

L∑

l=1

uly
l
ij, ∀(i, j) ∈ A, (15)

xk
ij ≥ 0, ∀(i, j) ∈ A. (16)

3 Benders decomposition

A natural way to tackle the problem defined by (9)–(16) is to use Benders
decomposition. To that aim, using duality, we rewrite gk(y) as

gk(y) =Maximum dk(αk
sk
− αk

tk)−
∑

(i,j)∈A

(
L∑

l=1

uly
l
ij

)

βk
ij (17)

subject to:

αk
i − αk

j − βk
ij ≤ ck

ij, ∀ (i, j) ∈ A, (18)

βk
ij ≥ 0, ∀ (i, j) ∈ A. (19)

Now, let (αk
ih, βk

ijh) for i ∈ V, (i, j) ∈ A, and h = 1, . . . , Hk, be the extreme

points of the polyhedron defined by (18)–(19) and denote ak
h = dk(αk

skh − αk
tkh)

for h = 1, . . . , Hk, and bk
ijlh = ulβ

k
ijh for (i, j) ∈ A, h = 1, . . . , Hk. Then, given a y
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that is feasible to (10)–(12) (or its continuous relaxation), gk(y) can be stated as

gk(y) =Maximum
h=1,...,Hk

ak
h −

∑

(i,j)∈A

L∑

l=1

bk
ijlhyl

ij. (20)

This yields the Benders reformulation of the problem defined by (9)–(16) as
follows.

Minimize
∑

(i,j)∈A

L∑

l=1

f l
ijy

l
ij +

K∑

k=1

ηk (21)

subject to:

∑

(i,j)∈δ+(Wk
p )

L∑

l=1

uly
l
ij ≥ dk, ∀p = 1, . . . , λk, k = 1, . . . , K, (22)

L∑

l=1

yl
ij ≤ 1, ∀(i, j) ∈ A, (23)

ηk ≥ ak
h −

∑

(i,j)∈A

L∑

l=1

bk
ijlhyl

ij, ∀h = 1, . . . , Hk, k = 1, . . . , K,

(24)

yl
ij ∈ {0, 1}, ∀(i, j) ∈ A, l = 1, . . . , L, (25)

ηk ≥ 0, ∀k = 1, . . . , K, (26)

where the implied nonnegativity constraints (26) are added for the sake of algo-
rithmic convenience. We now adopt a constraint generation procedure where
a relaxation of the problem, having a restricted number of constraints (22) and
(24), is solved at each iteration, as outlined below.

3.1 Benders decomposition procedure (basic version)

Step 1: Initialization Let P1 be the problem defined by (21), (23), (25), and (26).
Set q = 0.
Step 2: MIP-solver Set q← q + 1. Solve Pq using an MIP solver. Let (ȳ, η̄) be
an optimal solution to Pq.
Step 3: Feasibility cut identification For each commodity k (k = 1, . . . , K), find
a feasibility constraint

∑
(i,j)∈δ+(Wk

p )

∑L
l=1 ulyl

ij ≥ dk, p ∈ {1, . . . , λk} which is
violated by ȳ or verify that no such inequality exists.
Step 4: Feasibility test If one or more violated feasibility constraints are found in
Step 3, then define Pq+1 to be Pq amended by the violated feasibility constraints
and go to Step 2. Else, go to Step 5.
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Step 5: Optimality cut identification For each commodity k (k = 1, . . . , K), find
an optimality constraint ηk ≥ ak

h −
∑

(i,j)∈A
∑L

l=1 bk
ijlhyl

ij, which is violated by

(ȳ, η̄k) (i.e, find (ak
h, bk

ijlh) such that ak
h −

∑
(i,j)∈A

∑L
l=1 bk

ijlhȳl
ij > η̄k), or verify

that no such inequality exists.
Step 6: Optimality test If one or more violated optimality constraints are found
in Step 5, then define Pq+1 to be Pq amended by the violated optimality con-
straints and go to Step 2. Else, stop.

Step 3 requires the solution of K independent subproblems of the form:
(SP1k) – Given ȳ, find W ⊂ V satisfying sk ∈W and tk ∈ V \W, such that

∑

(i,j)∈δ+(W)

L∑

l=1

ulȳ
l
ij < dk,

or verify that no such subset exists.
Hence, SP1k amounts to finding

W∗k = argmin
W⊂V:

sk∈W and tk∈W̄

⎧
⎨

⎩

∑

(i,j)∈δ+(W)

L∑

l=1

ulȳ
l
ij

⎫
⎬

⎭
.

This problem amounts to finding a minimum cut separating sk and tk on the
network G, where the capacity of each arc (i, j) ∈ A is

∑L
l=1 ulȳl

ij. Let ϕk denote
the value of the maximum flow between sk and tk using these arc capacities.
Due to the max-flow-min-cut theorem [1], if ϕk < dk then the node subset
corresponding to the minimal cut solves SP1k (Gomory and Hu, 1962).

Moreover, Step 5 requires the solution of K independent subproblems of the
form:

(SP2k) – Given (ȳ, η̄), find h ∈ {1, . . . , Hk} such that

ak
h −

∑

(i,j)∈A

L∑

l=1

bk
ijlhȳl

ij > η̄k,

or verify that no such inequality exists.
Hence, (SP2k) amounts to solving

gk(y) = Maximum
h=1,...,Hk

⎧
⎨

⎩
ak

h −
∑

(i,j)∈A

L∑

l=1

bk
ijlhyl

ij

⎫
⎬

⎭
,

which involves solving a minimum cost flow problem where dk units of flow
must be sent from sk to tk on the network G, and where the capacity of each
arc (i, j) ∈ A is

∑L
l=1 ulȳl

ij. It is noteworthy that, since ȳ satisfies (22) and (23),
then SP2k is necessarily feasible.
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The maximum flow problem and the minimum cost flow problem are solvable
by efficient polynomial-time algorithms [1]. For instance, the so-called highest-
label preflow-push algorithm solves the maximum flow problem in O(n2√m)

time. Also, the enhanced capacity scaling algorithm solves the minimum cost
flow problem in O((m log n)(m+ n log n)) time.

At this point, it is worth mentioning that the above described solution pro-
cedure remains a valid approach for solving a slightly more general version of
the FCNFMF where multiple facilities of the same type might be installed on
the same arc. Indeed, only minor changes are required for tackling this var-
iant. More precisely, Constraints (3), (11), and (23) should be dropped, and
Constraints (6), (12), and (25) should be replaced by

yl
ij ∈ N, ∀(i, j) ∈ A, l = 1, . . . , L. (6’)

4 Enhancements

In order to improve the efficiency of the foregoing approach, we propose several
further enhancements that are described below.

4.1 Solving the linear relaxation and integration of a heuristic

The main computational effort of the proposed approach is performed in Step
2, which might be too time consuming since it requires the exact solution of an
NP-hard problem. Therefore, in order to alleviate the computational burden
we modify Step 2 in the following way. Given a Problem Pq, we first start by
solving its linear relaxation, which is denoted by LPq. Then, we perform a feasi-
bility test in order to check whether the continuous optimal solution ỹ violates
one or more feasibility cuts. If violated cuts are found, then they are appended
to Pq, and its linear relaxation is re-solved. Otherwise, if no violated cuts are
found and ỹ is not integer, then Pq is solved by means of a fast heuristic. (In our
implementation, an approximate binary solution is found by using a truncated
exact optimization algorithm. The algorithm is stopped as soon as it delivers
a feasible solution within a percentage relative gap of 1%.) Let ŷ denote the
resulting approximate feasible binary solution to Pq. If ŷ violates one or more
cuts, then these cuts are sequentially appended to Pq, which is then again solved
approximately. Otherwise, Pq is solved exactly. If the resulting solution y∗ vio-
lates one or more cuts, then these cuts are appended to Pq, and this augmented
problem is again processed as above by first solving it heuristically. Otherwise,
y∗ is output as an optimal solution.

4.2 Generation of initial feasibility cuts

Instead of starting from scratch, in a preprocessing step, some initial feasibility
cuts are generated. For each commodity k, we generate the cuts corresponding
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to the subsets {Wk
ρ , ρ = 1, . . . , µk} using the following simple recursive

procedure:

Phase 1 Forward recursion
1.1 Set Wk

1 = {sk}, ρ = 1,
1.2 While (v+(Wk

ρ) 
= {tk})
Begin

1.2.1 Wk
ρ+1 = (v+(Wk

ρ)\{tk}) ∪ (Wk
ρ)

1.2.2 ρ ← ρ + 1
End (While)

Phase 2 Backward recursion
2.1 Set W̄k

ρ = {tk}
2.2 While (v−(W̄k

ρ) 
= {sk})
Begin

2.2.1 W̄k
ρ+1 = (v−(W̄k

ρ)\{sk}) ∪ (W̄k
ρ)

2.2.2 ρ ← ρ + 1
End (While)

4.3 Appending path-connectivity constraints

Let G(y) = (V, A(y)) denote the graph that is obtained from G by removing all
the arcs (i, j) ∈ A such that

∑L
l=1 yl

ij = 0. Clearly, if y is an optimal solution then
the only leaves that G(y) might contain (discarding isolated nodes) are sources
and/or sinks. Hence, a valid pair of inequalities is

L∑

l=1

yl
ij −

∑

w∈δ−(i)

L∑

l=1

yl
wi ≤ 0, ∀(i, j) ∈ A, i ∈ V \ {s1, s2, . . . , sK}, (27)

L∑

l=1

yl
ij −

∑

w∈δ+(j)

L∑

l=1

yl
jw ≤ 0, ∀(i, j) ∈ A, j ∈ V \ {t1, t2, . . . , tK}. (28)

Constraints (27) and (28) guarantee that if
∑L

l=1 yl
ij = 1 then for the

designated respective indices, we must have
∑

w∈δ−(i)
∑L

l=1 yl
wi ≥ 1 and

∑
w∈δ+(j)

∑L
l=1 yl

jw > 1. It is noteworthy that since the initial feasibility cuts
are included in the model, then every feasible solution also satisfies

∑

j∈δ+(sk)

L∑

l=1

yl
sk,j
≥ 1 and

∑

i∈δ−(tk)

L∑

l=1

yl
i,tk ≥ 1 for k = 1, . . . , K. (29)

Hence, constraints (27) and (28) guarantee the existence of a path between
every pair (sk, tk). In the sequel, we refer to these constraints as path-con-
nectivity constraints. In our implementation, path-connectivity constraints are
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not included a priori in the original model, but only violated constraints are
iteratively generated “on the fly” and appended to the model.

5 Computational experiments

In order to assess the practical performance of the proposed approach, we have
coded it in Microsoft Visual C++ (version 6.0) in concert with the CPLEX 9.0
solver. All the computational experiments were carried out on a Pentium IV
3.2 GHz Personal Computer with 3.0 GB RAM.

The test-bed we have used consists of randomly generated instances. Each
instance, characterized by the number of nodes n, the number of arcs m, the
number of commodities K, and the number of facilities L, is constructed in the
following way. The coordinates of the nodes are integers chosen randomly from
the interval [1, 10]. The corresponding graph is initialized with a random span-
ning tree (which ensures its connectedness), then additional edges are added
randomly. Finally, each edge is replaced by a pair of oppositely directed arcs.
Let θij denote the Euclidean distance between two points i and j. If the arc
(i, j) ∈ A, then the corresponding variable cost is computed as ck

ij = �
√

θij
(where �a represents the smallest integer that is greater than or equal to a.)
(We also attempted generating problems having variable costs that depend on
k according to ck

ij = �
√

k+ θij, ∀(i, j) ∈ A, k = 1, . . . , K, for K = 5. All these
problems were solved to optimality similar to the experience reported below;
hence, for the sake of brevity, we suppress these results here.) Also, the corre-
sponding fixed charge associated with facility l having capacity ul is computed
as f l

ij = �θij
√

10ul. Note that the fixed charge of a facility is a concave function
of its capacity, which is compatible with the economy of scale phenomenon.
For all the generated instances, we set L = 3, and for each arc of the graph,
the installed capacity is selected in U = {10, 20, 40}. For each commodity k
(k = 1, . . . , K), the source sk and the sink tk are selected randomly, and the
demand dk, ∀ , is set equal to dk = �0.3
max, where 
max is the value of the
maximal flow between sk and tk with respect to the intermediate capacity (i.e.,
ul = 20).

The results are summarized in Table 1. For each instance, we report n : num-
ber of nodes, m : number of arcs, Sol : value of the optimal solution, Time :
total CPU time in seconds, FC : number of generated feasibility cuts, OC :
number of generated optimality cuts, and PCC : number of generated path-
connectivity cuts.

From Table 1, we observe that the proposed approach performs remark-
ably well, being able to solve exactly relatively large-size instances within a
reasonable CPU effort. Indeed, all of the instances, but one, were solved to
optimality.

We also tested this methodology on an important special case, namely the
fixed charge network flow problem (FCNF). The results are displayed in Table 2.
Interestingly, we observe from this table, that large instances of the FCNF hav-
ing up to 500 nodes and 2,000 arcs were solved to optimality (except that one
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Table 1 Computational performance on FCNFMF instances

Instance n m K Time Sol FC OC PCC

A01 10 30 5 2.403 842 60 12 42
A02 10 30 10 12.798 1,286 126 25 23
A03 10 40 5 1.211 742 54 9 23
A04 10 40 10 23.043 1,313 110 23 13
A05 10 50 5 0.18 566 42 3 7
A06 10 50 10 12.528 1,224 113 18 16
A07 10 60 5 0.14 650 42 2 5
A08 10 60 10 18.877 1,384 122 24 18
A09 20 50 5 5.317 1,042 135 11 88
A10 20 50 10 10.985 1,502 189 16 69
A11 20 80 5 24.665 780 118 18 82
A12 20 100 5 99.713 784 115 14 106
A13 50 150 5 9.834 1,067 148 22 240
A14∗ 50 200 5 – – – – –
A15 50 250 3 29.161 746 76 25 234
A16 100 250 3 30.644 946 89 66 316
A17 100 300 3 4.917 855 73 8 243
A18 100 400 3 99.062 1,136 89 27 381
A19 100 500 3 2.794 766 58 8 109

(∗) This instance remained unsolved after reaching the 3,600 s CPU time limit

instance remained unsolved after 3,600 s). To the best of our knowledge, the
solution of such large instances has never been previously reported in the liter-
ature.

In order to investigate the impact of the proposed enhancements, we ran
the basic version of the algorithm that is described in Section 3 on the FCNF
instances. The results are summarized in Table 3. In this table, each entry of the
columns Time_ratio, FC_ratio, and OC_ ratio, respectively represents the ratio
of the CPU time, the number of feasibility cuts, and the number of optimality
cuts, obtained with the basic version with respect to that for the enhanced one.
Examining this table, we see that for all instances, except for the four ones that
required the shortest computing times (less than 0.15 s), the CPU time as well
as the number of generated cuts for the basic version increased dramatically.
Also, five instances remained unsolved after reaching the maximum CPU time
limit (3,600 s) using the basic version (instead of just one for the enhanced one).

Finally, in order to get a better insight into the efficacy of the proposed
approach, we compared it with a state-of-the-art MIP solver. To that aim, we
used CPLEX 9.0 to solve the arc-based formulation of FCNFMF for instances
having installation costs only. For each instance, Table 4 reports the ratio
(Time_ratio) of the CPU time required by the MIP solver to that for the pro-
posed algorithm (note that we have again set the maximum CPU time limit to
3,600 s.) From this table, we see that all the 18 instances have been solved by
the proposed algorithm within a moderate CPU time. In contrast, only the five
smallest instances were solved to optimality by CPLEX, and that too, requiring
significantly greater CPU effort.
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Table 2 Computational performance on FCNF instances

Instance n m Time Sol FC OC PCC

B01 50 150 0.109 97 18 2 1
B02 50 200 0.063 64 11 2 1
B03 50 300 1.000 476 75 70 131
B04 50 400 0.078 126 10 3 7
B05 100 300 4.406 529 110 97 204
B06 100 400 0.594 552 47 36 145
B07 100 600 0.141 299 14 5 15
B08 200 600 4.218 456 80 67 202
B09 200 800 183.906 502 643 706 876
B10 200 1,000 0.328 286 18 7 33
B11 200 1,200 0.485 345 21 11 64
B12 300 800 1.188 669 42 24 120
B13 300 1,000 202.938 706 524 511 627
B14 300 1,200 2.875 561 116 103 262
B15∗ 500 1200 – – 275 252 836
B16 500 1,600 2.594 457 76 57 230
B17 500 2,000 399.875 553 178 164 810

(∗) This instance remained unsolved after reaching the 3,600 s CPU time limit

Table 3 Comparison of the performance of the basic version with respect to the enhanced
version

Instance n m Solved Time_ratio FC_ratio OC_ratio

B01 50 150 Yes 0.716 1.000 2.000
B02 50 200 Yes 0.746 1.000 2.000
B03 50 300 Yes 26.765 2.680 2.871
B04 50 400 Yes 0.795 1.200 2.333
B05 100 300 Yes 86.507 4.591 0.021
B06 100 400 Yes 125.184 5.787 7.417
B07 100 600 Yes 0.993 1.429 2.600
B08 200 600 No >853.485 >13.221 –
B09 200 800 No >19.261 >1.485 –
B10 200 1, 000 Yes 3.003 3.278 7.143
B11 200 1, 200 Yes 3.705 2.714 4.455
B12 300 800 Yes 12.942 5.619 9.542
B13 300 1, 000 No >17.821 >1.748 –
B14 300 1, 200 Yes 150.609 4.31 0.029
B15 500 1, 200 No – – –
B16 500 1, 600 Yes 64.479 5.026 0.035
B17 500 2, 000 No >9.002 >5.685 –

6 Conclusion

We have presented an exact algorithm based on Benders decomposition for
solving the Fixed Charge Network Flow Problem with Multiple Facilities.
The proposed approach includes several distinctive algorithmic features. In
particular, it is based on efficiently coordinating the solution of the LP relaxa-
tion, heuristics, and MIP solution, while incorporating Benders cuts along with
a class of path-connectivity cuts. Computational results attest to the efficacy
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Table 4 Comparison of the performance of the proposed algorithm with respect to a general-
purpose MIP solver

Instance n m K Sol Time CPLEX_Time Time_ratio

C01 10 30 45 707 1.11 3.953 3.561
C02 10 40 45 738 1.453 16.343 11.247
C03 10 50 45 680 1.547 10.875 7.029
C04 10 60 45 770 1.438 15.406 10.713
C05 15 50 105 1,220 4.328 – –
C06∗ 20 80 190 1,674 5.297 – –
C07∗ 30 120 100 2,267 49.016 – –
C08∗ 30 120 200 2,380 98.219 – –
C09∗ 30 120 300 2,400 208.547 – –
C10∗ 40 140 100 3,016 771.406 – –
C11∗ 40 140 200 3,199 945.125 – –
C12∗ 40 140 250 3,229 607.047 – –
C13∗ 50 160 100 3,932 257.281 – –
C14∗ 50 160 200 4,157 863.422 – –
C15∗ 50 160 250 4,157 649.906 – –
C16∗ 100 300 5 875 1694.047 – –
C17∗ 100 400 5 *** > 3600 – –
C18∗ 100 500 5 888 347.828 – –

(∗) This instance remained unsolved by CPLEX 9.0 after reaching the 3600 seconds CPU time limit

of the proposed algorithm, which can solve to optimality FCNFMF instances
having up to 100 nodes and 500 edges. In addition, large-scale instances of the
well-studied FCNF having up to 500 nodes and 2,000 edges were solved to opti-
mality. Furthermore, we have provided empirical evidence that the proposed
approach consistently outperforms both the basic Benders decomposition algo-
rithm as well as a state-of-the-art MIP solver. Indeed, this lattermost alternative
solution strategy failed to solve 13 out of the 18 instances that were successively
solved by the proposed algorithm. On the other hand, the basic Benders algo-
rithm failed to solve 5 out of 17 instances that were solved to optimality by the
proposed approach, where the latter was able to deliver solutions with more
than two orders of magnitude faster than the basic version in some cases.
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