Question 3

The power output of an adiabatic steam turbine is 5 MW, and the inlet and the exit conditions of the steam are as indicated in the figure shown.

- (a) Calculate Δh , Δke , Δpe , and the entropy change of the steam per kg of the steam flowing through the turbine,
- (b) Determine the work done per unit mass of the steam flowing through the turbine,
- (c) Calculate the mass flow rate of the steam, and
- (d) draw the process on a P-v and T-s diagrams

Question 3

A Carnot heat engine receives heat from a reservoir at 900°C at a rate of 800 kJ/min and rejects the waste heat to the ambient air at 27°C. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at -5°C and transfers it to the same ambient air at 27°C. Determine:

- (a) the thermal efficiency of the heat engine.
- (b) the COP of the refrigerator.
- (c) the maximum rate of heat removal from the refrigerated space
- (d) the total rate of heat rejection to the ambient air.

Question 3

Air is compressed from an initial state of 100 kPa and 17°C to a final state of 600 kPa and 57°C. Determine the entropy change of air during this compression process by using (a) property values from the air table and (b) average specific heats.