Chapter 13

One-Factor Experiments - General

13.1 Analysis-of-Variance Technique

e In the estimation and hypothesis testing material covered in Chapters 9 and 10, we were restricted in
each case to considering no more than two population parameters, for example, testing for the equality
of two population means.

e In testing for the equality of two population means using independent samples from normal
populations with common but unknown variance, it was necessary to obtain a pooled estimate of o2.
This material dealing in two-sample inference represents a special case of what we call the one-factor
problem.

e For example, in Exercise 10.35 on page 357, the survival time was measured for two samples of mice,
where one sample received a new serum for leukemia treatment and the other sample received no

treatment.
In this case, we say that there is one factor, namely treatment, and the factor is at two levels.



If several competing treatments were being used in the sampling process, more samples of mice would
be necessary. In this case, the problem would involve one factor with more than two levels and thus
more than two samples.

In the case of more than two sample problem (k > 2) , it will be assumed that there are k samples from
k populations.
One very common procedure used to deal with testing population means is called the analysis of
variance, or ANOVA.
We have used the analysis-of-variance approach in regression theory to partition the total sum of
squares into a portion due to regression and a portion due to error.
Example:
Suppose in an industrial experiment, an engineer is interested in how the mean absorption of moisture
in concrete varies among 5 different concrete aggregates (Treatments). The samples are exposed to
moisture for 48 hours. It is decided that 6 samples are to be tested for each aggregate (treatment),
requiring a total of 30 samples to be tested.

k =5 (number of aggregates/treatments)

n = 6 (number of observations for each aggregates/treatments)

kxn=5x6=30 (total number of observations)
The data are recorded in Table 13.1.



Table 13.1: Absorption of Moisture in Concrete Aggregates

Aggregate: 1 2 3 4 5
(Treatment) -5 505 639 417 563
457 580 615 449 631

450 508 511 517 522
731 583 573 438 613
499 633 648 415 656

632 517 677 555 679
Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

e The model for this situation may be set up as follows:
There are 6 observations taken from each of 5 populations with means p4, \,, ..., us, respectively.

U; = the mean absorption of moisture for the i — th aggregate (treament);i =1,2,...,5



We may wish to test
Hy: pg = pog =+ = s,
H,: At least two of the means are not equal.

This is equivalent of testing:
H, : there are no dif ferences between the mean absorption for the 5 aggregates (treaments)

H, : there are some dif ferences between the mean absorption for the 5 aggregates (treaments)



1-st Population 2-nd Population 5-th Population

b 1 n2 Jrn5
We need to test:
Hy: pg = pog =+ = s,

Hy: At least two of the means are not equal.

We independently select a random sample of size n; form the i-th population (i=1, 2, ..

We assume that:
- the populations are normal.
- the populations have the same variance (c?).

k).



- o2 is unknown.
- the samples are independent.
- the sample sizes are equal (n; = n,= ... =ng =n).

Table 13.2: k£ Random Samples

Treatment: 1 2 .o 7 .o k

Yyii Y21 - Yir v Yk1

Y12 Y22 v Yiz - Yk2

Yin  Y2n T Yin Tt Ykn
Total Y. Yo - Y, - Yr Y.
Mean vi. Y2 o Yioo o Yk Y.

Y;j = the j — th observation of the of the i — th treatment

k = number of treatments



n = number of observations for each treament

kn = totl number of observations

Y = Grand total = total of all observations = ?:12?:13’1‘ i

= . Y
y = Grand mean = mean of all observations = -

n
Y; = total of the observations of the i — th treatment = z Vij
j=1

Y,
y; = mean of the observations of the i — th treatment = —
n



Two Sources of Variability in the Data

e In the analysis-of-variance procedure, it is assumed that the variation among the aggregate averages
(treatment means) is attributed to:

(1) variation among aggregate types (Between Groups variation / Between Treatment
variation) that is, due to differences in the chemical composition of the aggregates (due to
the nature of the treatments).

(Also, it is called variation due to treatments)

(2) variation in absorption among observations within aggregate types (Within Group variation
/ Within-Sample variation / Within Treatment variation). The within aggregate variation is,
of course, brought about by various causes. Perhaps humidity and temperature conditions
were not kept entirely constant throughout the experiment.

(Also, it is called variation due to error)

o we shall consider the within-sample (Within Group/ Within Treatment) variation to be chance or
random variation.

e Part of the goal of the analysis of variance is to determine if the differences among the 5 sample means
are what we would expect due to random variation (due to random error) alone or, rather, due to



variation beyond merely random effects, i.e., differences in the chemical composition of the aggregates
(differences between treatments).



13.3 One-Way Analysis of Variance:
Completely Randomized Design (One-Way ANOVA)

Random samples of size n are selected from each of k& populations. The k differ-
ent populations are classified on the basis of a single eriterion such as different
treatments or groups. Today the term treatment is used generally to refer to
the various classifications, whether they be difterent aggregates, different analysts,
different fertilizers, or different regions of the country.

Assumptions and Hypotheses in One-Way ANOVA

It is assumed that the k populations are independent and normally distributed
with means piq. s, ..., and common variance o2. As indicated in Section 13.2,
these assumptions are made more palatable by randomization. We wish to derive
appropriate methods for testing the hypothesis

Hy: py = po =--- = g,
H,: At least two of the means are not equal.

Let y;; denote the jth observation from the ith treatment and arrange the data as
in Table 13.2. Here, Y; is the total of all observations in the sample from the ith
treatment, §; is the mean of all observations in the sample from the ith treatment,
Y  is the total of all nk observations, and §_ is the mean of all nk observations.



Table 13.2: k£ Random Samples

Treatment: 1 2 ce 7 con k

Y11 Y21 Yil Yk1
Y12 Y292 Yi2 Yk2

Yin  Y2n T Yin e Ykn
Total i Y, o Y, ... % Y,

Mean yi. Y2, o Yiooo o Yk, Y.




Resolution of Total Variability into Components

Our test will be based on a comparison of two independent estimates of the common
population variance 2. These estimates will be obtained by partitioning the total
variability of our data, designated by the double summation

k n
SST =D (w;—4.)°

i=1 j=1
into two components.
Theorem 13.1: | Sum-of-Squares Identity
E n k k. n
ZZ(yij -7.) = TIZ(’Q:'. -7.)%+ Z Z(yij —7;.)?
i=1 j=1 i=1 i=1 j=1

SST SSA + SSE

It will be convenient in what follows to identify the terms of the sum-of-squares
identity by the following notation:



Three Important k n
Measures of SST = ZZ(@;H — 1_;)2 — total sum of squares,

Variability i=1 j=1
k
SSA = ?12[@1'_ — y_,_)g = treatment sum of squares,
i=1
k e
SSE = ZZ(L&:; — 7:.)? = error sum of squares.
i=1 j=1

The sum-of-squares 1dentity can then be represented symbolically by the equation
SST = SSA + SSE.

The 1dentity above expresses how between-treatment and within-treatment
variation add to the total sum of squares.

Note:
Usually, we compute the error sum of squares (SSE) by difference, i. e.,

SSE = SST — SSA



Degrees of Freedoms:
Degrees of freedom of SST: df(SST) =nk -1
Degrees of freedom of SSA: df(SSA) =k -1
Degrees of freedom of SSE: df(SSE) = k(n-1)

Note:
We can compute df(SSE), the degrees of freedom of the error sum of squares by difference, i. e.,
df(SSE) = df(SST) - df(SSA)
= (nk-1) — (k-1) =nk-k=k(n-1)



Mean of Squares:

S S SS
Mean of Square = MS = um of Squares  _ 35
Degrees of Freedom af

Treatment Mean SSA

.
Square MSA = s7 = 71
Error Mean SSE
2 i,

Square MSE= s"= ————




F-Ratio for Testing Equality of Means

Ho: py = pg =+ = p

Hy: At least two of the means are not equal.

When Hj is true, the ratio f = s7/s? is a value of the random variable F having the
F-distribution with £ —1 and k(n —1) degrees of freedom

The null hypothesis Hy is rejected at the a-level of significance when

f> falk—=1,k(n—1)).

The computations for an analysis-of-variance problem are usually summarized in
tabular form, as shown in Table 13.3.



Note:

falk =1L, k(n—1)) = f,(k — 1,kn — k)

Is the critical value or the value of f-distribution (with degrees of freedoms v, =k —1and v, = kn — k)

that leaves an area of a to the right. This value can be found from F-table.

Table A.6 F-Distribution Probability Table 741
Table A.6 Critical Values of the F-Distribution 0 T —
Jo.05(v1, v2)
U1
Vo 1 2 3 4 5 6 7 8 9
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 0.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77



Table 13.3: Analysis of Variance for the One-Way ANOVA

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

SSA s
Treatments SSA E—1 83 = 1 =

- g2
Error SSE k(n—1) s? = _S5E

E(n—1)

Total SST kn —1




Example 13.1:] Test the hypothesis i = ptog = --- = p5 at the 0.05 level of significance tor the data
of Table 13.1 on absorption of moisture by various types of cement aggregates.

Table 13.1: Absorption of Moisture in Concrete Aggregates

Aggregate: 1 2 3 4 5

551 595 639 417 563

457 580 615 449 631

450 508 511 517 522

731 583 573 438 613

499 633 648 415 656

632 517 677 555 679
Total 3320 3416 3663 2791 3664 16,854
Mean 553.33 569.33 610.50 465.17 610.67 561.80

Treatment = concrete aggregate
k =5 (number of treatments / concrete aggregates)
n = 6 (number of observation for each treatment)

y =561.80— grand mean = mean of all observations
y, = 553.33 —  mean of the observations of the 1-st treatment (1-st aggregate)



¥, = 569.33 —>
Vs = 610.50 —
¥V, = 465.17 >
Ve = 610.67 —

We need to test:

mean of the observations of the 2-nd treatment (2-nd aggregate)
mean of the observations of the 3-rd treatment (3-rd aggregate)
mean of the observations of the 4-th treatment (4-th aggregate)
mean of the observations of the 5-th treatment (5-th aggregate)

H, : there are no dif ferences between the mean absorption for the 5 aggregates (treaments)

H, : there are some dif ferences between the mean absorption for the 5 aggregates (treaments)



Solution: The hypotheses are

Ho: pn = po = = ps,
Hi: At least two of the means are not equal.
a = 0.05.

Critical region: f > 2.76 with v1 = 4 and vo = 25 degrees of freedom. The
sum-of-squares computations give

SST = 209,377, SSA = 85356,
SSE = 209,377 — 85,356 = 124,021.

These results and the remaining computations are exhibited in Figure 13.1 in the

SAS ANOVA procedure.

Note:

falk =1L k(n = 1)) = f.05(4,25) = 2.76



Table A.6  F-Distribution Probability Table

Table A.6 Critical Values of the F-Distribution 0 ,ﬂzhhﬁm'“'
fo.05(v1,v2)
U1
Vg 1 2 3 O) 5 6 7 3 9
1 161.45 19950 21571 22458  230.16  233.99 23677 23888  240.54
p 18.51 19.00 10.16 10.25 19.30 19.33 10.35 10.37 19.38
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
@ 4.24 3.30 2.99 2.60 2.49 2.40 2.34 2.8
26 4.23 3.37 2.08 2.74 2.50 247 2.39 2.32 2.7



k n

SST = ZZ{;;U — 7_)? = total sum of squares,

i=1 j=1
k

SSA = Z =1 )q = treatment sum of squares,
=

k n
SSE = E E (vij — vi.) 2 — error sum of squares.

The sum-of-squares identity can then be represented symbolically by the equation

SST = SSA + SSE.

(a) Calculating the total sum of squares (SST) and its degrees of freedom (df):

k n 5 6
SST=) X (Gy-7)=) ) (y—56180)
=1 Jj=1 =1 j=1

= (551 — 561.80)2 + (595 — 561.80)2 + --- + (679 — 561.80)*
(we use all observations)

= 209376.8



df of SST:
df(SST)=kn—1=5%6—1=29

(b) Calculating treatment sum of squares (SSA), its degrees of freedom (df), and its mean of squares

(s1):
k 5
SSA=n) G -§)*=6) (7 —56180)
i=1 i=1
= 6[(553.33 — 561.80)% + (569.33 — 561.80)? + (610.50 — 561.80)*
+ (465.17 — 561.80)% + (610.67 — 561.80)?]
= 85356.4667
df of SSA:
df(SSA)=k—-1=5-1=4
MS of treatment (MSA):



SSA  SSA  85356.4667
df (SSA) k-1 4

s2 = MSA = = 21339.1167

(c) Calculating error sum of squares (SSE), its degrees of freedom (df), and its mean of squares (s2):
SSE = By dif ference
SSE = SST — SSA = 209376.8 — 85356.4667 = 124020.3333
df(SSE) =k(n—1)=5(6—-1) =25

Note: df of SSE can be calculated by difference:
df (SSE) = df(SST) — df(SSA) =29 -4 =25
MS of error (MSA):

SSE SSE 124020.3333

s* = MSE = df(SSE) _k(n—1) 25

= 4960.8133



2
(d) Calculating f- ratio (=1):

f

S

MSA  s? 213391167
—===—=4.30
MSE  s? 4960.8133

Table 13.3: Analysis of Variance for the One-Way ANOVA

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f
T o , SSA s
reatments SSA E—1 ST=17"79 2
Error SSE k(n—1) s? = _55E
k(n—1)
Total SST kn —1




ANOVA table:

Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square F- ratio
Treatment/Aggregate 85356.4667 4 21339.1167 4.30
(Between Treatments)
Error 124020.3333 25 4960.8133
(Within Treatment)
Total 209376.8 29

For a = 0.05, the tabulated value of F with degrees of freedoms v; = 4 and v, = 25 is:

fo.05(4,25) = 2.76

Decision:
e Since the computed F-ratio is greater than the tabulated F-value, i.e.,

f —ration = 4.3 > f,05(4,25) = 2.76

wereject Hy:py = py = i3 = fly = Us




e \We conclude that there are significant differences between treatments' means, which means that
the concrete aggregates do not have the same mean of absorption of moisture.

Example: (Exercise 13.1 page 518)

Six different machines are being considered for use in manufacturing rubber seals. The machines are

being compared with respect to tensile strength of the product. A random sample of four seals from each
machine is used to determine whether the mean tensile strength varies from machine to machine. The

following are the tensile-strength measurements in kilograms per square centimeter X 1071

Machine
1 2 3 4 5 6




17.5 16.4 20.3 14.6 17.5 183
16.9 19.2 15.7 16.7 19.2 16.2
15.8 17.7 17.8 20.8 165 17.5
18.6 15.4 18.9 18.9 205 20.1

Perform the analysis of variance at the 0.05 level of significance, and indicate whether or not the mean
tensile strengths differ significantly for the six machines.

Solution:
Let u; =the mean tensile strength of the i-th machine (i=1, 2, ..., 6)
At the significance level @ = 0.05 , we need to test:
Hotpy = plp = 3 = g = Us = Ug
against

H;:at least two of the means are not equal

Machine




1 2 3 4 5 6

17.5 16.4 203 146 175 18.3
16.9 19.2 15.7 16.7 19.2 16.2
15.8 17.7 178 208 16.5 17.5
18.6 15.4 189 189 20.5 20.1

Total = 68.8 68.7 12.7 71 73.7 72.1 Grand Total =427

Mean (y;)= 17.2 17.175 18.175 17.75 18.425 18.025 Grand mean (y ) = 17.79167

Treatment = Machine

k=6 (number f treatments)

n==4 (number of observations for each treatment)
kn=6Xx4 =24 (total number of observations)

y =17.79167 (Grand mean = mean of all observations = sum of all observations / kn)

y; = mean of the observations of the i-th treatment (i-th machine)  (i=1, 2, ..., 6)
= sum of the observations of the i-th treatment (i-th machine) / n

v =17.2 mean of the observations of the 1-st treatment (1-st machine)
vy, = 17.175 mean of the observations of the 2-nd treatment (2-nd machine)



y3. = 18.175 mean of the observations of the 3-rd treatment (3-rd machine)

V4 = 17.75 mean of the observations of the 4-th treatment (4-th machine)
ys. = 18.425 mean of the observations of the 5-th treatment (5-th machine)
Ve. = 18.025 mean of the observations of the 5-th treatment (5-th machine)

(a) Calculating the total sum of squares (SST) and its degrees of freedom (df):

k n 6 4
SST = E | E Y= E _ E (i) — 17.79167)?
=1 &md j=1 =1 bmd j=1

= (17.5-17.79167)? + (16.4 — 17.79167)* + ---
+(20.1 — 17.79167)?> we use all sample values

= 67.97833
df(SST)=kn—1=6x4—-1= 23
(b) Calculating treatment sum of squares (SSA), its degrees of freedom (df), and its mean of squares

(s1):

k 5
SSA = nz V; —y)% = 42 (y; —17.79167)2
i=1



= 4[(17.2 — 17.79167)? + (17.175 — 17.79167)% + (18.175 — 17.79167)?
+ (17.75 — 17.79167)% + (18.425 — 17.79167)% + (18.025 — 17.79167)?]

= 5.338333
df(SSA)=k—-1=6—-1=75

SSA SSA  5.338333

2_ — — —
St =M= e s T k=1 5

= 1.067667

(c) Calculating error sum of squares (SSE), its degrees of freedom (df), and its mean of squares (s?):
SSE = By dif ference
SSE = SST — SSA = 67.97833 — 5.338333 = 62.64
df(SSE) =k(n—1)=6(4—1) =18

Note: df of SSE can be calculated by difference:
df (SSE) = df(SST) — df(SSA) =23 -5=18



s? = MSE =

SSE SSE

62.64
= = 3.48

2
(d) Calculating F- ratio (j—;):

df(SSE) k(n—1) 18

MSA s?  1.067667
1
f=—0=5= = 0.306801
MSE S 3.48
ANOVA table:
Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square F- ratio
Treatment/Machine 5.338333 5 1.067667 0.306801
(Between Treatments)
Error 62.64 18 3.48
(Within Treatment)
Total 67.97833 23

For ¢ = 0.05, the critical (the tabulated) value of F with degrees of freedoms v; =5 and v, =18 is:

fo.05(5,18) = 2.77




Decision:
e Since the computed F-ratio is less than the tabulated F-value, i.e,

f — ration = 0.306801 < f,05(5,18) = 2.77

we do notreject Hy:py = Uy = Uz = [y = s = Ug

e \We conclude that there are no significant differences between treatments' means , which means
that there are no significant differences between the mean tensile strength of the 6 machines.



