
Chapter 13 

One-Factor Experiments - General 

 

13.1 Analysis-of-Variance Technique 

 In the estimation and hypothesis testing material covered in Chapters 9 and 10, we were restricted in 

each case to considering no more than two population parameters, for example, testing for the equality 

of two population means. 

 In testing for the equality of two population means using independent samples from normal 

populations with common but unknown variance, it was necessary to obtain a pooled estimate of 𝜎2.  

This material dealing in two-sample inference represents a special case of what we call the one-factor 

problem.  

 For example, in Exercise 10.35 on page 357, the survival time was measured for two samples of mice, 

where one sample received a new serum for leukemia treatment and the other sample received no 

treatment.  

In this case, we say that there is one factor, namely treatment, and the factor is at two levels. 



  If several competing treatments were being used in the sampling process, more samples of mice would 

be necessary. In this case, the problem would involve one factor with more than two levels and thus 

more than two samples. 

 In the case of more than two sample problem (k > 2) , it will be assumed that there are k samples from 

k populations.  

 One very common procedure used to deal with testing population means is called the analysis of 

variance, or ANOVA. 

 We have used the analysis-of-variance approach in regression theory to partition the total sum of 

squares into a portion due to regression and a portion due to error. 

 Example: 

Suppose in an industrial experiment, an engineer is interested in how the mean absorption of moisture 

in concrete varies among 5 different concrete aggregates (Treatments). The samples are exposed to 

moisture for 48 hours. It is decided that 6 samples are to be tested for each aggregate (treatment), 

requiring a total of 30 samples to be tested. 

k = 5 (number of aggregates/treatments) 

n = 6 (number of observations for each aggregates/treatments) 

k×n = 5 × 6 = 30  (total number of observations) 

The data are recorded in Table 13.1. 



 

 

 The model for this situation may be set up as follows: 

There are 6 observations taken from each of 5 populations with means μ1, μ2, . . . , μ5, respectively.  

 

𝜇𝑖 = 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡); 𝑖 = 1, 2, … , 5 

 

 



 

This is equivalent of testing: 

𝐻𝑜 ∶ 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 5 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 (𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡𝑠) 

𝐻1 ∶ 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑠𝑜𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 5 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 (𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡𝑠) 

 

 



 

We need to test: 

 
We independently select a random sample of size 𝑛𝑖 form the i-th population (i=1, 2, …k). 

We assume that: 

- the populations are normal. 

- the populations have the same variance (𝜎2). 



- σ2 is unknown. 

- the samples are independent. 

- the sample sizes are equal (n1 =  n2= … = nk = n). 

 

 

 

𝑌𝑖𝑗 = 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 

𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 



𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡 

𝑘𝑛 = 𝑡𝑜𝑡𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

 

𝑌..  = Grand total =  total of all observations = ∑ ∑ 𝑦𝑖𝑗
𝑛
𝑗=1

𝑘
𝑖=1   

    

�̅�..  = Grand mean =  mean of all observations =  
𝑌..

𝑘𝑛
     

 

𝑌𝑖. = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  ∑ 𝑦𝑖𝑗

𝑛

𝑗=1

 

 

�̅�𝑖.  = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  
𝑌𝑖.

𝑛
 

 

 

 

 



Two Sources of Variability in the Data 

 In the analysis-of-variance procedure, it is assumed that the variation among the aggregate averages 

(treatment means) is attributed to: 

(1) variation among aggregate types (Between Groups variation / Between Treatment 

variation) that is, due to differences in the chemical composition of the aggregates (due to 

the nature of the treatments). 

(Also, it is called variation due to treatments) 

(2) variation in absorption among observations within aggregate types (Within Group variation 

/ Within-Sample variation / Within Treatment variation). The within aggregate variation is, 

of course, brought about by various causes. Perhaps humidity and temperature conditions 

were not kept entirely constant throughout the experiment. 

(Also, it is called variation due to error) 

 

 we shall consider the within-sample (Within Group/ Within Treatment) variation to be chance or 

random variation.  

 

 Part of the goal of the analysis of variance is to determine if the differences among the 5 sample means 

are what we would expect due to random variation (due to random error) alone or, rather, due to 



variation beyond merely random effects, i.e., differences in the chemical composition of the aggregates 

(differences between treatments). 

  



 



 

 



 



 

 

Note: 

Usually, we compute the error sum of squares (SSE) by difference, i. e., 

𝑺𝑺𝑬 =   𝑺𝑺𝑻 − 𝑺𝑺𝑨 



Degrees of Freedoms: 

Degrees of freedom of SST: df(SST) = nk – 1 

Degrees of freedom of SSA: df(SSA) = k – 1 

Degrees of freedom of SSE: df(SSE) =  k(n-1) 

 

Note: 

We can compute df(SSE), the degrees of freedom of the error sum of squares by difference, i. e., 

df(SSE) =  df(SST) – df(SSA) 

     =  (nk–1)   –     (k–1)  = nk – k = k(n–1) 

 

  



Mean of Squares: 

     𝑀𝑒𝑎𝑛 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 =  𝑀𝑆 =
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚
 =    

𝑆𝑆

𝑑𝑓
 

 

 

 

 



 

 



Note: 

𝑓𝛼(𝑘 − 1, 𝑘(𝑛 − 1)) = 𝑓𝛼(𝑘 − 1, 𝑘𝑛 − 𝑘) 

is the critical value or the value of f-distribution (with degrees of freedoms 𝜈1 = 𝑘 − 1 𝑎𝑛𝑑 𝜈2 = 𝑘𝑛 − 𝑘 ) 

that leaves an area of  to the right. This value can be found from F-table. 

 

 



 

 

 

 

  



 

 

Treatment = concrete aggregate 

𝑘 = 5  (number of treatments / concrete aggregates) 

𝑛 = 6   (number of observation for each treatment) 

�̅�..  = 561.80      grand mean = mean of all observations 

�̅�1. = 553.33  mean of the observations of the 1-st treatment (1-st aggregate) 



�̅�2. = 569.33  mean of the observations of the 2-nd treatment (2-nd aggregate) 

�̅�3. = 610.50  mean of the observations of the 3-rd treatment (3-rd aggregate) 

�̅�4. = 465.17  mean of the observations of the 4-th treatment (4-th aggregate) 

�̅�5. = 610.67  mean of the observations of the 5-th treatment (5-th aggregate) 

 

We need to test: 

𝐻𝑜 ∶ 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 5 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 (𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡𝑠) 

𝐻1 ∶ 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑠𝑜𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 5 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 (𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡𝑠) 

 

 

 



 

Note: 

𝑓𝛼(𝑘 − 1, 𝑘(𝑛 − 1)) = 𝑓0.05(4, 25) = 2.76 



 



 

 

(a) Calculating the total sum of squares (SST) and its degrees of freedom (df): 

𝑆𝑆𝑇 =  ∑ ∑ (𝑦𝑖𝑗 − �̅�..)
2

𝑛

𝑗=1

𝑘

𝑖=1
= ∑ ∑ (𝑦𝑖𝑗 − 561.80)2

6

𝑗=1

5

𝑖=1
 

          = (551 − 561.80)2 + (595 − 561.80)2 + ⋯ + (679 − 561.80)2      

(we use all observations) 

          = 209376.8 



df of SST: 

𝑑𝑓(𝑆𝑆𝑇) = 𝑘𝑛 − 1 = 5 ∗ 6 − 1 = 29 

 

(b) Calculating treatment sum of squares (SSA),  its degrees of freedom (df), and its mean of squares 

(𝒔𝟏
𝟐): 

𝑆𝑆𝐴 = 𝑛 ∑ (�̅�𝑖. − �̅�..)
2

𝑘

𝑖=1
= 6 ∑ (�̅�𝑖. − 561.80)2

5

𝑖=1
  

= 6 [(553.33 − 561.80)2 + (569.33 − 561.80)2 + (610.50 − 561.80)2

+ (465.17 − 561.80)2 + (610.67 − 561.80)2] 

          = 85356.4667 

df of SSA: 

𝑑𝑓(𝑆𝑆𝐴) = 𝑘 − 1 = 5 − 1 = 4 

  MS of treatment (MSA): 



𝑠1
2 = 𝑀𝑆𝐴 =

𝑆𝑆𝐴

𝑑𝑓(𝑆𝑆𝐴)
=

𝑆𝑆𝐴

𝑘 − 1
=

85356.4667

4
= 21339.1167 

(c) Calculating error sum of squares (SSE),  its degrees of freedom (df), and its mean of squares (𝒔𝟐): 

  𝑆𝑆𝐸 = 𝐵𝑦  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

  𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 = 209376.8 − 85356.4667 = 124020.3333  

𝑑𝑓(𝑆𝑆𝐸) = 𝑘(𝑛 − 1) = 5(6 − 1) = 25 

 

Note: df of SSE can be calculated by difference: 

df (SSE) = df(SST) – df(SSA) = 29 – 4 = 25 

  MS of error (MSA): 

𝑠2 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑑𝑓(𝑆𝑆𝐸)
=

𝑆𝑆𝐸

𝑘(𝑛 − 1)
=

124020.3333

25
= 4960.8133 

 



(d) Calculating f- ratio (
𝒔𝟏

𝟐

𝒔𝟐): 

  𝑓 =
𝑀𝑆𝐴

𝑀𝑆𝐸
=

𝑠1
2

𝑠2 =
21339.1167

4960.8133
= 4.30 

 

 

 

 



ANOVA table: 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

Computed 

F- ratio 

Treatment/Aggregate 

(Between Treatments) 
85356.4667 4 21339.1167 4.30 

Error 

(Within Treatment) 
124020.3333 25 4960.8133  

Total 209376.8 29   

 

For 𝛼 = 0.05, the tabulated value of F with degrees of freedoms 𝜐1 = 4 and 𝜐2 = 25 is: 

𝑓0.05(4, 25) =  2.76 

Decision:  

 Since the computed F-ratio is greater than the tabulated F-value, i.e., 

𝑓 − 𝑟𝑎𝑡𝑖𝑜𝑛 = 4.3 > 𝑓0.05(4, 25) =  2.76 

 

we reject  𝐻𝑜: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 



 

 We conclude that there are significant differences between treatments' means, which means that 

the concrete aggregates do not have the same mean of absorption of moisture. 

 

 

 

 

Example: (Exercise 13.1 page 518) 

Six different machines are being considered for use in manufacturing rubber seals. The machines are 

being compared with respect to tensile strength of the product. A random sample of four seals from each 

machine is used to determine whether the mean tensile strength varies from machine to machine. The 

following are the tensile-strength measurements in kilograms per square centimeter×10−1: 

 

Machine 

1 2 3 4 5 6 



17.5 16.4 20.3 14.6 17.5 18.3 

16.9 19.2 15.7 16.7 19.2 16.2 

15.8 17.7 17.8 20.8 16.5 17.5 

18.6 15.4 18.9 18.9 20.5 20.1 

 

Perform the analysis of variance at the 0.05 level of significance, and indicate whether or not the mean 

tensile strengths differ significantly for the six machines. 

Solution: 

Let   𝜇𝑖 = the mean tensile strength of the i-th machine (i=1, 2, …, 6) 

At the significance level 𝛼 = 0.05  , we need to test: 

   𝐻𝑜: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 = 𝜇6 

  against 

   𝐻1: 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑡𝑤𝑜  𝑜𝑓  𝑡ℎ𝑒  𝑚𝑒𝑎𝑛𝑠 𝑎𝑟𝑒  𝑛𝑜𝑡  𝑒𝑞𝑢𝑎𝑙  

 

 Machine  



 1 2 3 4 5 6  

 17.5 16.4 20.3 14.6 17.5 18.3  

 16.9 19.2 15.7 16.7 19.2 16.2  

 15.8 17.7 17.8 20.8 16.5 17.5  

 18.6 15.4 18.9 18.9 20.5 20.1  

Total = 68.8 68.7 72.7 71 73.7 72.1 Grand Total =427 

Mean (y̅i.) = 17.2 17.175 18.175 17.75 18.425 18.025 Grand mean (�̅�..) = 17.79167 

 

Treatment = Machine 

𝑘 = 6  (number f treatments) 

𝑛 = 4    (number of observations for each treatment) 

 𝑘𝑛 = 6 × 4 = 24  (total number of observations) 

�̅�..  = 17.79167     (Grand mean = mean of all observations = sum of all observations / kn) 

  

�̅�𝑖. = mean of the observations of the i-th treatment (i-th machine)       (i=1, 2, …, 6) 

     = sum of the observations of the i-th treatment (i-th machine) / n 

  

�̅�1. = 17.2 mean of the observations of the 1-st treatment (1-st machine) 

�̅�2. = 17.175 mean of the observations of the 2-nd treatment (2-nd machine) 



�̅�3. = 18.175 mean of the observations of the 3-rd treatment (3-rd machine) 

�̅�4. = 17.75 mean of the observations of the 4-th treatment (4-th machine) 

�̅�5. = 18.425 mean of the observations of the 5-th treatment (5-th machine) 

�̅�6. = 18.025 mean of the observations of the 5-th treatment (5-th machine) 

  

(a) Calculating the total sum of squares (SST) and its degrees of freedom (df): 

𝑆𝑆𝑇 =  ∑ ∑ (𝑦𝑖𝑗 − �̅�..)
2

𝑛

𝑗=1

𝑘

𝑖=1
= ∑ ∑ (𝑦𝑖𝑗 − 17.79167)2

4

𝑗=1

6

𝑖=1
 

          = (17.5 − 17.79167)2 + (16.4 − 17.79167)2 + ⋯

+ (20.1 − 17.79167)2     𝑤𝑒 𝑢𝑠𝑒 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

          = 67.97833 

𝑑𝑓(𝑆𝑆𝑇) = 𝑘𝑛 − 1 = 6 ∗ 4 − 1 = 23 

(b) Calculating treatment sum of squares (SSA),  its degrees of freedom (df), and its mean of squares 

(𝒔𝟏
𝟐): 

𝑆𝑆𝐴 = 𝑛 ∑ (�̅�𝑖. − �̅�..)
2

𝑘

𝑖=1
= 4 ∑ (�̅�𝑖. − 17.79167)2

5

𝑖=1
  



          = 4[(17.2 − 17.79167)2 + (17.175 − 17.79167)2 + (18.175 − 17.79167)2

+ (17.75 − 17.79167)2 + (18.425 − 17.79167)2 + (18.025 − 17.79167)2] 

          = 5.338333 

𝑑𝑓(𝑆𝑆𝐴) = 𝑘 − 1 = 6 − 1 = 5 

𝑠1
2 = 𝑀𝑆𝐴 =

𝑆𝑆𝐴

𝑑𝑓(𝑆𝑆𝐴)
=

𝑆𝑆𝐴

𝑘 − 1
=

5.338333

5
= 1.067667 

(c) Calculating error sum of squares (SSE),  its degrees of freedom (df), and its mean of squares (𝒔𝟐): 

  𝑆𝑆𝐸 = 𝐵𝑦  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

  𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 = 67.97833 − 5.338333 = 62.64 

𝑑𝑓(𝑆𝑆𝐸) = 𝑘(𝑛 − 1) = 6(4 − 1) = 18 

 

Note:  df of SSE can be calculated by difference: 

 df (SSE) = df(SST) – df(SSA) = 23 – 5 = 18 

 



𝑠2 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑑𝑓(𝑆𝑆𝐸)
=

𝑆𝑆𝐸

𝑘(𝑛 − 1)
=

62.64

18
= 3.48 

 

(d) Calculating F- ratio (
𝒔𝟏

𝟐

𝒔𝟐): 

  𝑓 =
𝑀𝑆𝐴

𝑀𝑆𝐸
=

𝑠1
2

𝑠2 =
1.067667

3.48
= 0.306801 

ANOVA table: 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

Computed 

F- ratio 

Treatment/Machine 

(Between Treatments) 
5.338333 5 1.067667 0.306801 

Error 

(Within Treatment) 
62.64 18 3.48  

Total 67.97833 23   

 

For 𝛼 = 0.05, the critical (the tabulated) value of F with degrees of freedoms 𝜈1 =5 and 𝜈2 =18 is: 

𝑓0.05(5, 18) =  2.77 



Decision:  

 Since the computed F-ratio is less than the tabulated F-value, i.e, 

𝑓 − 𝑟𝑎𝑡𝑖𝑜𝑛 = 0.306801 <  𝑓0.05(5, 18) =  2.77 

 

we do not reject  𝐻𝑜: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 = 𝜇6 

 

 We conclude that there are no significant differences between treatments' means , which means 

that there are no significant differences between the mean tensile strength of the 6 machines. 


