Consider the reduction formula $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$. The objective of the problem is to use integration by parts to derive the given reduction formula. If u and v are differentiable functions, then the formula for the integration by parts is

$$\int u \, dv = uv - \int v \, du$$

where dv equal the most complicated part of the integrand that can be readily integrated.

Here, the possible choices for dv are dx, $x^m dx$, $e^x dx$, $x^m e^x dx$. The most complicated of these expressions that can be readily integrated is $e^x dx$. So, let $dv = e^x dx$ so that $v = \int e^x dx$

$$=e^{x}$$
 Integrate

Now, let $u=x^*$ so that

 $du = mx^{m-1} dx$ Find the derivative

Substituting these values in the integration by parts formula implies $\int x^m e^x \ dx = x^m e^x - \int e^x m x^{m-1} \ dx$ $= x^m e^x - m \int e^x x^{m-1} \ dx$ Use the rule: $\int cf(x) dx = c \int f(x) dx$

Thus,
$$\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$$
.

Hence, the reduction formula is derived.

Consider the reduction formula $\int \sec^m x \, dx = \frac{\sec^{m-2} x \tan x}{m-1} + \frac{m-2}{m-1} \int \sec^{m-2} x \, dx \quad \text{for } m \neq 1.$

The objective of the problem is to use integration by parts to derive the given reduction formula.

First, rewrite the given integral as

$$\int \sec^m x \, dx = \int \sec^{m-2} x \sec^2 x \, dx$$

If u and v are differentiable functions, then the formula for the integration by parts is

$$\int u \, dv = uv - \int v \, du$$

where dv equal the most complicated part of the integrand that can be readily integrated.

Here, the possible choices for dv are dx, $\sec^{2}x dx$, $\sec^{2}x dx$ and $\sec^{2}x dx$. The most complicated of these expressions that can be readily integrated is $\sec^{2}x dx$. So, let $dv = \sec^{2}x dx$ so that

So, let
$$dv = \sec^2 x$$

 $v = \int \sec^2 x \, dx$

$$= \tan x$$
 Integrate

Now, let $u = \sec^{m-2} x$ so that

 $du = (m-2)\sec^{m-3}x\sec x\tan x dx$ Find the derivative

Substituting these values in the integration by parts formula implies $\int \sec^m x \, dx = \sec^{m-2} x \tan x - \int \tan x (m-2) \sec^{m-3} x \sec x \tan x \, dx$ $= \sec^{m-2} x \tan x - (m-2) \int \tan^2 x \sec^{m-2} x \, dx \quad \text{Simplify}$ Now, use the trigonometric identity, $\tan^2 x = \sec^2 x - 1$ and simplify further. $\int \sec^m x \, dx = \sec^{m-2} x \tan x - (m-2) \int (\sec^2 x - 1) \sec^{m-2} x \, dx$ $= \sec^{m-2} x \tan x - (m-2) \int (\sec^m x - \sec^{m-2} x) \, dx \quad \text{Simplify}$ $= \sec^{m-2} x \tan x - (m-2) \int (\sec^m x \, dx + (m-2)) \int \sec^{m-2} x \, dx \quad \text{Simplify}$

Consequently,

$$\int \sec^{m} x \, dx + (m-2) \int \sec^{m} x \, dx = \sec^{m-2} x \tan x - (m-2) \int \sec^{m} x \, dx + (m-2) \int \sec^{m-2} x \, dx$$

$$(m-2+1) \int \sec^{m} x \, dx = \sec^{m-2} x \tan x + (m-2) \int \sec^{m-2} x \, dx$$

$$(m-1) \int \sec^{m} x \, dx = \sec^{m-2} x \tan x + (m-2) \int \sec^{m-2} x \, dx$$
Simplify

Finally, dividing both sides by m-1 implies

$$\int \sec^{m} x \, dx = \frac{\sec^{m-2} x \tan x}{m-1} + \frac{m-2}{m-1} \int \sec^{m-2} x \, dx$$

Thus,
$$\int \sec^m x \, dx = \frac{\sec^{m-2} x \tan x}{m-1} + \frac{m-2}{m-1} \int \sec^{m-2} x \, dx$$

Hence, the reduction formula is derived.

Consider the integral $\int x^5 e^x dx$. The objective of the problem is to find the value of the integral using the reduction formula $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$. To find the value of the given integral, substitute 5 for m in the reduction formula $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$ and simplify further.

$$\int x^5 e^x dx = x^5 e^x - 5 \int x^{5-1} e^x dx$$
$$= x^5 e^x - 5 \int x^4 e^x dx \qquad \text{Simplify}$$

Now, to find $\int x^4 e^x dx$, apply the reduction formula $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$ with m=4. This gives

$$\int x^4 e^x dx = x^4 e^x - 4 \int x^{4-1} e^x dx$$
$$= x^4 e^x - 4 \int x^3 e^x dx \qquad \text{Simplify}$$

To find $\int x^3 e^x dx$, again use the reduction formula $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$ with m=3. This gives

$$\int x^3 e^x dx = x^3 e^x - 3 \int x^{3-1} e^x dx$$
$$= x^3 e^x - 3 \int x^2 e^x dx \qquad \text{Simplify}$$

To find $\int x^2 e^x dx$, again use the reduction formula $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$ with m=2. This gives

$$\int x^2 e^x dx = x^2 e^x - 2 \int x^{2-1} e^x dx$$
$$= x^2 e^x - 2 \int x e^x dx \qquad \text{Simplify}$$

```
Finally, to find \int xe^x dx, again use the reduction formula \int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx With m=1. This gives \int xe^x dx = xe^x - 1 \int x^{1-1} e^x dx with m=1. This gives \int xe^x dx = xe^x - 1 \int x^{1-1} e^x dx = xe^x - \int e^x dx Simplify = xe^x - e^x + c_1 Find the integral Consequently, \int x^5 e^x dx = x^5 e^x - 5 \int x^{5-1} e^x dx = x^5 e^x - 5 \left[ x^4 e^x - 4 \left( x^3 e^x - 3 \left( x^2 e^x - 2 \left( xe^x - e^x + c_1 \right) \right) \right) \right] = e^x \left( x^5 - 5x^4 + 20x^3 - 60x^2 + 120x - 120 \right) + C Simplify where C = 120c_1, is a constant. Hence, \int x^5 e^x dx = e^x \left( x^5 - 5x^4 + 20x^3 - 60x^2 + 120x - 120 \right) + C.
```