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Introduction

Network layer is concerned with getting packets from the source all
the way to the destination.

Getting to destination may require making many hops at the
intermediate nodes.

To achieve its goal, the network layer must know about the topology of
the communication subnet and choose appropriate paths through it.

It must also choose routes to avoid overloading some of the
communication lines and nodes while leaving the others idle.

When the source and destination are in different networks, it is up the
network layer to deal with these differences (Internetworking).
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Network Layer Design Issues

1. Services Provided to the Transport Layer:

The network layer services have been designed with the following goals:

The service should be independent of the subnet technology.

The transport layer should be shielded from the number, type, and

topology of the subnets present.

The network addresses made available to the transport layer should use

a uniform numbering plan, even across LANs or WANs.

To achieve these goals, the network layer can provide either connection-

oriented service or connectionless service.
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Network Layer Design Issues

The first camp (represented by the Internet community) supports
connectionless service. It argues that the subnet’s job is moving bits around
and nothing else. In their view, the subnet is unreliable. Therefore, the host
should do error controls (error detection and correction) and flow control
themselves.

The other camp (represented by the telephone companies) argues that the
subnet should provide a reasonably reliable, connection-oriented service. In
their view, connections should have the following properties:

The network layer process on the sending side must set up the connection
to its peer on the receiving side.

When the connection is set up, the two processes negotiate about the
parameters of the service to be provided.

Communication in both directions, and packets are delivered in sequence.

Flow control is provided.
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Conclusion
The argument between connection-oriented and connectionless service really

has to do with where to put the complexity.

In the connection-oriented service, it is in the network layer (subnet); in the

connectionless service, it is in the transport layer (hosts).

Supporters of connectionless service say that computing power has become

cheap, so that there is no reason to put the complexity in the hosts.

Furthermore, it is easier to upgrade the hosts rather than the subnet. Finally,

some applications, such as digitized voice and real time data require speedy

delivery as much more important than accurate delivery.

Supporters of connection-oriented service say that most users are not

interested in running complex transport layer protocols in their machine.

What they want is reliable, trouble free service, and this service can be best

provided with network layer connections.
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Network Layer Design Issues

2. Internal Organization of the Network Layer:

There are basically two different philosophies for organizing the

subnet, one using connections (virtual circuits) and the other using

connectionless (datagrams).
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Switching

Circuit SwitchingStore and Forward

Switching

Message Switching Packet Switching

Virtual-CircuitDatagram
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Store-and-Forward Packet Switching

The environment of the network layer protocols

fig 5-1
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Implementation of Connection-Oriented 

Service

Routing within a virtual-circuit subnet
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Implementation of Connectionless Service

Routing within a diagram subnet
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Comparison of Virtual-Circuit and Datagram 

Subnets



Dr. Mohammed Arafah 13

Routing Algorithms

The routing algorithm is the part of the network layer responsible for deciding

which output line an incoming packet should be transmitted on.

If the subnet uses datagrams internally, this decision must be made anew for

every arriving data packet since the best route may have changed since last

time.

If the subnet uses virtual circuits internally, routing decisions are made only

when a new virtual circuit is being set up. Therefore, data packets just follow

the previously established route.

Regardless to the above two schemes, it is desirable for a routing algorithm to

have the following properties: correctness, simplicity, robustness, stability,

fairness, and optimality.
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Routing Algorithms

Conflict between fairness and optimality
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Routing Algorithms

Routing algorithms can be grouped into two major classes: Nonadaptive and

adaptive algorithms.

Nonadaptive algorithms do not base their routing decisions on the current

traffic or topology. Instead, the route from a source to a destination is

computed in advance, off-line, and downloaded to the nodes when the

network is booted. This procedure is called static routing.

Adaptive algorithms, in contrast, change their routing decisions to reflect

changes in the topology and the traffic.
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Routing Algorithms

The Optimality Principle

Shortest Path Routing

Flooding

Distance Vector Routing

Link State Routing

Hierarchical Routing

Broadcast Routing

Multicast Routing

Routing for Mobile Hosts

Routing in Ad Hoc Networks
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The Optimality Principle

The optimality principle states that if the router J is on the optimal path from

router I to router K, then the optimal path from J to K falls along the same

route.

Proof

If r1 is the part of the route from I to J and the rest of the route is r2. If a

route better than r2 existed from I to K, it could be concatenated with r1 to

improve the route from I to K, contradicting our statement that r1 r2 is

optimal.
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The Optimality Principle

(a) A subnet. (b) A sink tree for router B.
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The Sink Tree

As a result from the optimality principle, the optimal routes from all sources

to a given destination form a tree rooted at the destination. Such a tree is

called a sink tree.

The sink tree does not contain any loop, so each packet will be delivered

within a finite and bounded number of hops.
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Shortest Path Routing

The idea is to build a graph for the subnet, with each node of the
graph representing a router and each arc of the graph representing a
communication line (a link).

Consider a directed graph G= (N,A) with number of nodes N and
number of arcs A, in which each arc (i,j) is assigned some real
number dij as the length or distance of the arc.

The length of any directed path p = (i,j,k,…,l,m) is defined as dij+
djk+ …+dlm.

Given any two nodes i, m of the graph, the shortest path problem is
to find a minimum length (i.e., shortest) directed path from i to m.
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Bellman-Ford Algorithm

The Bellman-Ford algorithm finds the shortest path from every node to a certain

node (say, node 1).

Let us denote dij =  if (i,j) is not an arc of the graph.

Also, we define Di
h as the length of the shortest walk from the node i to node 1,

subject to constraint that the walk contains at most h arcs and goes through node

1 only once.

By convention, D1
h = 0, for all h. Also, Di

0 = , for all i  1.

Di
h can be generated by the iteration: Di

h+1 = minj [dij + Dj
h], for all i  1.

The algorithm terminates after h iterations if Di
h = Di

h-1, for all i.
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Bellman-Ford Algorithm

Example:

dij = dji for all (i,j)

Bellman-Ford

D2
1=1

D4
1=4

D2
2=1

D4
2=4

D3
2=4

D5
2=2 D4

3=3 D5
3=2

D6
3=6

D2
3=1 D2

3=3

D4
4=3 D5

4=2

D6
4=5

D2
4=1 D2

4=3
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Bellman-Ford Algorithm

Example:

Notes:

Computation Complexity = O(N3).

The Bellman-Ford algorithm iterates on the number of the arcs in a path.

dij = dji for all (i,j)

654321h

00

4101

244102

6233103

5233104

5233105
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Bellman-Ford Algorithm

h=0

D1
0=0 , D2

0=  , D3
0=  , D4

0=  , D5
0=  , D6

0= 

h=1

D1
1=0 , D2

1= 1 (Direct), D3
1=  , D4

1= 4 (Direct), D5
1=  , D6

1= 

dij = dji for all (i,j)
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Bellman-Ford Algorithm

h=2

D1
2=0

D2
2= 1 (direct)

D3
2= minj [d3j+Dj

1]  D3
2= minj [d32+D2

1 , d35+D5
1 , d36+D6

1 ]

 D3
2= minj [3+1 , 1+ , 2+ ] = 4 (Through node 2)

D4
2= minj [d4j+Dj

1]  D4
2= minj [d41+D1

1 , d45+D5
1]

 D4
2= minj [4+0 , 1+ ] = 4 (Direct)

D5
2= minj [d5j+Dj

1]  D5
2= minj [d52+D2

1 , d53+D3
1 , d54+D4

1 , d56+D6
1 ]

 D5
2= minj [1+1 , 1+ , 1 + 4 , 4 +  ] = 2 (Through node 2)

D6
2= minj [d6j+Dj

1]  D6
2= minj [d63+D3

1 , d65+D5
1]

 D6
2= minj [2+  , 4 +] = 

dij = dji for all (i,j)
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Bellman-Ford Algorithm

h=3

D1
3=0

D2
3= 1 (direct)

D3
3= minj [d3j+Dj

2]  D3
3= minj [d32+D2

2 , d35+D5
2 , d36+D6

2 ]

 D3
3= minj [3+1 , 1+2 , 2 + ] = 3 (Through node 5)

D4
3= minj [d4j+Dj

2]  D4
3= minj [d41+D1

2 , d45+D5
2]

 D4
3= minj [4+0 , 1+2 ] = 3 (Through node 5)

D5
3= minj [d5j+Dj

2]  D5
3= minj [d52+D2

2 , d53+D3
2 , d54+D4

2 , d56+D6
2 ]

 D5
3= minj [1+1 , 1+4 , 1 + 4 , 4 +  ] = 2 (Through node 2)

D6
3= minj [d6j+Dj

2]  D6
3= minj [d63+D3

2 , d65+D5
2]

 D6
3= minj [2+ 4 , 4 +2] = 6

dij = dji for all (i,j)
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Bellman-Ford Algorithm

h=4

D1
4=0

D2
4= 1 (direct)

D3
4= minj [d3j+Dj

3]  D3
4= minj [d32+D2

3 , d35+D5
3 , d36+D6

3 ]

 D3
4= minj [3+1 , 1+2 , 2 +6] = 3 (Through node 5)

D4
4= minj [d4j+Dj

3]  D4
4= minj [d41+D1

3 , d45+D5
3]

 D4
4= minj [4+0 , 1+2 ] = 3 (Through node 5)

D5
4= minj [d5j+Dj

3]  D5
4= minj [d52+D2

3 , d53+D3
3 , d54+D4

3 , d56+D6
3 ]

 D5
4= minj [1+1 , 1+4 , 1 + 4 , 4 + 6 ] = 2 (Through node 2)

D6
4= minj [d6j+Dj

3]  D6
4= minj [d63+D3

3 , d65+D5
3]

 D6
4= minj [2+ 3 , 4 +2] = 5 (Through node 3)

dij = dji for all (i,j)
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Bellman-Ford Algorithm

h=5

D1
5=0

D2
5= 1 (direct)

D3
5= minj [d3j+Dj

4]  D3
5= minj [d32+D2

4 , d35+D5
4 , d36+D6

4 ]

 D3
5= minj [3+1 , 1+2 , 2 +6] = 3 (Through node 5)

D4
5= minj [d4j+Dj

4]  D4
5= minj [d41+D1

4 , d45+D5
4]

 D4
5= minj [4+0 , 1+2 ] = 3 (Through node 5)

D5
5= minj [d5j+Dj

4]  D5
5= minj [d52+D2

4 , d53+D3
4 , d54+D4

4 , d56+D6
4 ]

 D5
5= minj [1+1 , 1+4 , 1 + 4 , 4 + 6 ] = 2 (Through node 2)

D6
5= minj [d6j+Dj

4]  D6
5= minj [d63+D3

4 , d65+D5
4]

 D6
5= minj [2+ 3 , 4 +2] = 5 (Through node 3)


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Dijkstra’s Algorithm

Dijkstra’s algorithm iterates on the length of the path.

The general idea is to find the shortest paths to a destination
(node 1) in order of increasing path length.

The shortest of the shortest paths to node 1 must be a single arc
from the closest neighbor of node 1, since any multiple-arc path
cannot be shorter than the first arc length because of
nonnegative-length of any arc.

The next shortest of the shortest paths must either be a single-arc
path from the next closest neighbor of 1 or the shortest two-arc
path through the previously chosen node, and so on.
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Dijkstra’s Algorithm
We define Di as the estimate of the shortest path length from the node i to

node 1.

When the estimate becomes certain, we regard the node as being

permanently labeled and keep track of this with a set P of permanently

labeled nodes.

The nodes added to P at each step will be the closest to node 1.
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Dijkstra’s Algorithm

The Detailed Algorithm:

Initially, P = {1}, D1 = 0, and Dj = dj1, for all j  1.

Step 1: (Find the next closest node.) Find i  P such that

Di = min Dj, for all  j  P.

Set P := P   {i}. If P contains all nodes, then stop; the algorithm is complete.

Step 2: (Updating the labels.) For all  j  P set 

Dj = min [Dj , dji + Di]

Go to step 1. 
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Dijkstra’s Algorithm

Dijkstra's algorithm to compute the shortest path through a graph
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Dijkstra’s Algorithm

Dijkstra's algorithm to compute the shortest path through a graph
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Dijkstra’s Algorithm

Example:

dij = dji for all (i,j)

Dijkstra’s Algorithm

D2=1

D4=4

D3=4

D5=2

P = {1 , 2}

D4=3 D5=2

D6=6

D2=1 D2=3

P = {1 , 2 , 5}

D4=3 D5=2

D6=5

D2=1 D2=3

P = {1 , 2 , 3 , 4 , 5}
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Dijkstra’s Algorithm

P={1}, D1=0 , Dj=dj1 for j  1.

 D2= 1 (Direct), D3=  , D4= 4 (Direct), D5=  , D6=  dij = dji for all (i,j)

Step1:

Di=min jP [ Dj ]  Di=min j{2,3,4,5,6}= [1,  , 4 , , ]

Di= 1 for i = 2  D2 =1 (Direct)

 P={1 , 2}

Step2:

j  P  j {3, 4, 5, 6} , i=2 , D2=1

Dj = min [Dj , dj2 + D2]

j =3, D3 =min[D3 , d32 + D2 ]  D3 =min[, 3+1]    D3 = 4 (Through node 2)

j =4, D4 =min[D4 , d42 + D2 ]  D4 =min[4,  +1]   D4 = 4 (Direct)

j =5, D5 =min[D5 , d52 + D2 ]  D5 =min[, 1+1]    D5 = 2 (Through node 2)

j =6, D6 =min[D6 , d62 + D2 ]  D6 =min[,  +1]  D6 = 

Go to step 1.

P P′
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Dijkstra’s Algorithm

dij = dji for all (i,j)

Step1:

Di=min jP [ Dj ]  Di=min j{3,4,5,6}= [4, 4 , 2 , ]

Di= 2 for i = 5  D5 =2 (Through node 2)

 P={1 , 2 , 5}

Step2:

j  P  j {3, 4, 6} , i=5 , D5=2

Dj = min [Dj , dj5 + D5]

j =3, D3 =min[D3 , d35 + D5 ]  D3 =min[4, 1+2]   D3 = 3 (Through node 5)

j =4, D4 =min[D4 , d45 + D5 ]  D4 =min[4, 1+2]   D4 = 3 (Through node 5)

j =6, D6 =min[D6 , d65 + D5 ]  D6 =min[, 4+2]  D6 = 6 (Through node 5)

Go to step 1.

P P′
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Step2:

j  P  j {4, 6} , i=3 , D3=3

Dj = min [Dj , dj3 + D3]

j =4, D4 =min[D4 , d43 + D3 ]  D4 =min[3,  +3]   D4 = 3 (Through node 5)

j =6, D6 =min[D6 , d63 + D3 ]  D6 =min[6, 2+3]     D6 = 5 (Through node 3)

Go to step 1.

Dijkstra’s Algorithm

dij = dji for all (i,j)Step1:

Di=min jP [ Dj ]  Di=min j{3,4,6}= [3, 3 , 6]

Randomly, pick one, say node 3.

Di= 3 for i = 3  D3 =3 (Through node 5)

 P={1 , 2 , 3 , 5}

P
P′
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Step2:

j  P  j {6} , i=4 , D4=3

Dj = min [Dj , dj4 + D4]

j =6, D6 =min[D6 , d64 + D4 ]  D6 =min[5,  +3]     D6 = 5 (Through node 3)

Go to step 1.

Dijkstra’s Algorithm

dij = dji for all (i,j)Step1:

Di=min jP [ Dj ]  Di=min j{4,6}= [3 , 5]

Di= 3 for i = 4  D4 =3 (Through node 5)

 P={1 , 2 , 3 , 4 , 5}

P
P′
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P contains all nodes, stop

Dijkstra’s Algorithm

dij = dji for all (i,j)Step1:

Di=min jP [ Dj ]  Di=min j{6}= [5]

Di= 5 for i = 6  D6 =5 (Through node 3)

 P={1 , 2 , 3 , 4 , 5 , 6}

P
P′
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Dijkstra’s Algorithm

The first 5 steps used in computing the shortest path from A to D.  
The arrows indicate the working node.



Dr. Mohammed Arafah 41

Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm, unlike the previous two, finds the shortest

paths between all pairs of nodes together.

It iterates on the set of nodes that are allowed as intermediate nodes on the

paths.

It starts with single arc distances (i.e., no intermediate nodes) as starting

estimates of the shortest path lengths.

It then calculates the shortest paths under the constraint that only node 1 can

be used as intermediate node, and then with constraint that only 1 and 2 can

be used, and so forth.

Let Dij
n be the shortest path length from node i to j with the constraint that

only nodes 1, 2, …, n can be used as intermediate nodes on paths.
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Floyd-Warshall Algorithm 

The Detailed Algorithm:

Initially, Dij
0 = dij,  for all i &  j,  i  j.

For n = 0, 1, 2, …, N-1,

for all i  j.],min[ )1()1(

1 n

jn

n

ni

n

ij

n

ij DDDD 

 
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Floyd-Warshall Algorithm

dij = dji for all (i,j)















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
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




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4011
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2103
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direct Link


















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






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NNNN
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555
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11

)0(

Step 0: Direct Link
Last Node 

Before Target

Example:
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Floyd-Warshall Algorithm

dij = dji for all (i,j)
Step 1: Node 1 is the new intermediate node




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Floyd-Warshall Algorithm

dij = dji for all (i,j)
Step 2: Node 2 is the new intermediate node
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Floyd-Warshall Algorithm

dij = dji for all (i,j)
Step 3: Node 3 is the new intermediate node
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Floyd-Warshall Algorithm

dij = dji for all (i,j)
Step 4: Node 4 is the new intermediate node



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
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
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N

N

33633

35533

34214

33232

33122

33121

)4(



Dr. Mohammed Arafah 48

Floyd-Warshall Algorithm

dij = dji for all (i,j)
Step 5: Node 5 is the new intermediate node

4]31,10[],min[ )5(

56

)5(

45

)5(

46

)5(

46  DDDD

2]11,8[],min[ )4(
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)4(
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)4(

34

)5(

34  DDDD
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
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Floyd-Warshall Algorithm

dij = dji for all (i,j)
Step 6: Node 6 is the new intermediate node











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


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








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
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












N

N

N

N

N

N
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35533

54514

33532

33122

33121

)6(

Example:

To get the best path from 1 to 6, consider row 1 of (6). It shows that the node before the target (6) is 3.

To get the best path from 1 to 3, consider row 1 of (6). It shows that the node before the target (3) is 2.

To get the best path from 1 to 2, consider row 1 of (6). It shows that the node before the target (2) is 1.

Therefore, the path from 1 to 6 pass through 2 first, then through 3 before reaching the target 6.
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Flooding
Flooding is a static algorithm, in which every incoming packet is sent out on
every outgoing line except the one it arrived on.

Flooding generates vast numbers of duplicate packets, in fact, an infinite number
unless some measures are taken to damp the process.

One such measure is to have a hop counter contained in the header of each
packet, which is decremented at each hop, with packet being discarded when the
counter reaches zero.

A variation of flooding is selective flooding. In this algorithm, the routers do not
send every incoming packet out every line, only on those lines that are going
approximately in the right direction.

Flooding is used as a metric against which other routing algorithms can be
compared. Flooding always chooses the shortest path and can produce the shorter
delay.
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Flow-Based Routing
To use this algorithm, we must know the following information in advance:

The subnet topology.

The traffic matrix (Fij).

The Line Capacity matrix (Cij).

The tentative routing algorithm.

In some network, the mean data flow between each pair of nodes is relatively

stable and predictable.

The basic idea is that for a given line, the capacity and average flow is known, it

is possible to compute the mean packet delay on the line from Queueing Theory.

From the mean delays of all the lines, it is easy then to calculate the mean packet

delay per line for the entire subnet.
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Flow-Based Routing

We can calculate the mean delay for each line (Ti) using the Queueing Theory formula:

where L is the mean packet size in bits,

Ci is the capacity in kps of a channel i, and

i is the mean flow in packets/sec of a channel i.

To compute the mean time (T) for the entire subnet:

where

i
i

i

L

C
T




1

i

i

iWTT 




i

i

i
iW




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Flow-Based Routing

Example:

A

B

D

C

E F

20

20

20

20 20

10

10
50

A B C D E F

A 9

AB

4

ABC

1

ABFD

7

AE

4

AEF

B 9

BA

8

BC

3

BFD

2

BFE

4

BF

C 4

CBA

8

CB

3

CD

3

CE

2

CEF

D 1

DFBA

3

DFB

3

DC

3

DCE

4

DF

E 7

EA

2

EFB

3

EC

3

ECD

5

EF

F 4

FEA

4

FB

2

FEC

4

FD

5

FE

Destinations

S
o

u
rc

es

(a) A subnet with line capacities shown in kbps.

(b) The traffic in packets/sec and the routing matrix.
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Flow-Based Routing

Example: Continued.
l Line

i 

(pkts/sec)

Ci

(kbps)

Ci / L

(pkts/sec) Ti (msec) Weight

1 AB 14 20 25 91 0.171

2 BC 12 20 25 77 0.146

3 CD 6 10 12.5 154 0.073

4 AE 11 20 25 71 0.134

5 EF 13 50 62.5 20 0.159

6 FD 8 10 12.5 222 0.098

7 BF 10 20 25 67 0.122

8 EC 8 20 25 59 0.098

 
i

i packets sec/82

 
i

iW 1

 
i

ii mWTT sec86

Analysis of a subnet using a mean packet size of 800 bits.

The reverse traffic (BA, CB, etc.) is the same as the forward traffic.
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Queueing Theory

i
i

i

L

C
T




1

Proof:

N = Average number of customers in the system.

i = mean flow in packets/sec of a channel i.

T = Time spent in the system.

W = Time spent in the Queue.

Nq = Average number of customers in the queue.

Ns = Average number of customers in the service = , where 0    1.

x = Channel service time.

 = Channel service rate.

 = Channel Utilization.

Pk = Probability that there are k customers in the system.

P0 = Probability that the system is idle = 1 - .

L = mean packet size in bits.

Ci  = The capacity in kbps of a channel i.
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Queueing Theory

Little Theorem:









/     /1   and  







xN

xN

WN

TN

s

s

q
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Queueing Theory

M/M/1 Model:
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Queueing Theory
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Queueing Theory
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Routing Protocols

Static RoutingDynamic Routing

Routing Protocols

Examples: RIP, IGRP,

EIGRP

Link State Distance Vector

Examples: OSPF
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Routing Protocols
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Routing Protocols



Dr. Mohammed Arafah 63

Routing Metric

Internetwork 
Delay

Bandwidth Reliability Load

Routing Metric
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Processor

Packet

Input

Output Port 1

Queue

Output Port 2

Output Port N

…

Routing Table

192.90.90.0 255.255.255.0 1

150.40.0.0 255.255.0.0 3

195.50.30.0 255.255.255.0 2

… … …

160.20.0.0 255.255.0.0 2

Network Number Subnet Mask
Output 

Port #

Routed Protocols
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Processor

Packet

Input

Output Port 1

Queue

195 50 30 5

195 50 30 0

IP Packet with a 

Destination Address:

Routing Table

192.90.90.0 255.255.255.0 1

150.40.0.0 255.255.0.0 3

195.50.30.0 255.255.255.0 2

… … …

160.20.0.0 255.255.0.0 2

Network Number Subnet Mask
Output 

Port #

Output Port 2

Output Port 3

195 50 30 5

255 255 255 0
Subnet Mask

IP Address

Network No.

Match

Output Port is 2

Routed Protocols
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Static Routing

Fast Ethernet 0/0

200.50.1.1

Hostname: R1

IP: 200.50.2.1

Mask:255.255.255.0

Interface: serial 0/0/0 

Hostname: R2

IP: 200.50.4.1

Mask:255.255.255.0

Interface: serial 0/0/0 

Hostname: R2

IP: 200.50.2.2

Mask:255.255.255.0

Interface: serial 0/0/1 

200.50.1.0 / 24

Hostname: R3

IP: 200.50.4.2

Mask:255.255.255.0

Interface: serial 0/0/0 

200.50.3.0 / 24 200.50.5.0 / 24

Fast Ethernet 0/0

200.50.3.1

Fast Ethernet 0/0

200.50.5.1

Example 1:
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Static Routing
R1’s Configuration:

R1# config t

R1(config)# ip route 0.0.0.0 0.0.0.0 serial 0/0/0

R1(config)# exit

R1# copy run start

R2’s Configuration:

R2# config t

R2(config)# ip route 200.50.1.0 255.255.255.0 serial 0/0/1

R2(config)# ip route 200.50.5.0 255.255.255.0 serial 0/0/0

R2(config)# exit

R2# copy run start
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Static Routing
R3’s Configuration:

R3# config t

R3(config)# ip route 0.0.0.0 0.0.0.0 serial 0/0/0

R3(config)# exit

R3# copy run start
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Static Routing

Example 2:

LAN 1
LAN 2

200.50.5.50

200.50.5.0

R1 R2 R3 R4

Serial 0/0/0 Serial 0/0/1 Serial 0/0/0

R1(config)# ip route 200.50.5.0 255.255.255.0 serial 0/0/0

R2(config)# ip route 200.50.5.0 255.255.255.0 serial 0/0/1

R3(config)# ip route 200.50.5.0 255.255.255.0 serial 0/0/0
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Dynamic Routing

1. Distance Vector Routing

2. Link State Routing
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Dynamic Routing
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Dynamic Routing

Fast Ethernet 0/0

200.50.1.1

Hostname: R1

IP: 200.50.2.1

Mask:255.255.255.0

Interface: serial 0/0/0 

Hostname: R2

IP: 200.50.4.1

Mask:255.255.255.0

Interface: serial 0/0/0 

Hostname: R2

IP: 200.50.2.2

Mask:255.255.255.0

Interface: serial 0/0/1 

200.50.1.0 / 24

Hostname: R3

IP: 200.50.4.2

Mask:255.255.255.0

Interface: serial 0/0/0 

200.50.3.0 / 24 200.50.5.0 / 24

Fast Ethernet 0/0

200.50.3.1

Fast Ethernet 0/0

200.50.5.1

Example:
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Dynamic Routing
R1’s Configuration: R1# config t

R1(config)# router rip

R1(config-router)# network 200.50.1.0

R1(config-router)# network 200.50.2.0

R1(config-router)# ^Z

R1# copy run start

R2’s Configuration: R2# config t

R2(config)# router rip

R2(config-router)# network 200.50.2.0

R2(config-router)# network 200.50.3.0

R2(config-router)# network 200.50.4.0

R2(config-router)# ^Z

R2# copy run start
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Dynamic Routing

R3’s Configuration: R3# config t

R3(config)# router rip

R3(config-router)# network 200.50.4.0

R3(config-router)# network 200.50.5.0

R3(config-router)# ^Z

R3# copy run start
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Distance Vector Routing (Distributed Bellman-

Ford)
Distance vector routing is a dynamic algorithm.

The basic idea is that each router maintains a table giving the best known

distance to each destination and which line to use to get there. These tables are

updated by exchanging information with the neighbors.

In distance vector routing, each router maintains a routing table, which

contains one entry for each router in the network. The entry contains two

parts: the preferred outgoing line for a certain destination, and an estimate of

time and distance for that destination.

Once every T msec, each router sends to each neighbor a list of its estimated

delays to each destination. It also receives similar list from each neighbor.
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Distance Vector Routing

(b) Input from A, I, H, K, 

and the new routing table for J

(a) A subnet

The router J computes its new route to router G as follows:

DjG = min[DJA+DAG, DJI+DIG, DJH+DHG, DJK+DKG]

= min[8+18, 10+31, 12+6, 6+31] = 18 msec.
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A 24

B 36

C 18

D 27

E 7

F 20

G 31

H 20

I 0

J 11

K 22

L 33

Routing 

Table I

Router

A

Router

J

Router

I
Router

H

Router

K

Router

B

Router

C

Router

D

Router

E

Router

F

Router

G
Router

L

A 0

B 12

C 25

D 40

E 14

F 23

G 18

H 17

I 21

J 9

K 24

L 29

Routing 

Table A

A 21

B 28

C 36

D 24

E 22

F 40

G 31

H 19

I 22

J 10

K 0

L 9

Routing 

Table K

A 20

B 31

C 19

D 8

E 30

F 19

G 6

H 0

I 14

J 7

K 22

L 9

Routing 

Table H

Distance Vector Routing
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A 24

B 36

C 18

D 27

E 7

F 20

G 31

H 20

I 0

J 11

K 22

L 33

Routing 

Table I

A 0

B 12

C 25

D 40

E 14

F 23

G 18

H 17

I 21

J 9

K 24

L 29

Routing 

Table A

A 21

B 28

C 36

D 24

E 22

F 40

G 31

H 19

I 22

J 10

K 0

L 9

Routing 

Table K

A 20

B 31

C 19

D 8

E 30

F 19

G 6

H 0

I 14

J 7

K 22

L 9

Routing 

Table H

Distance Vector Routing

Router

A

Router

J

Router

I
Router

H

Router

K

Router

B

Router

C

Router

D

Router

E

Router

F

Router

G
Router

L

JA Delay = 8

JI Delay = 10 

JH Delay = 12

JK Delay = 6
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A 24

B 36

C 18

D 27

E 7

F 20

G 31

H 20

I 0

J 11

K 22

L 33

Routing 

Table I

A 0

B 12

C 25

D 40

E 14

F 23

G 18

H 17

I 21

J 9

K 24

L 29

Routing 

Table A

A 21

B 28

C 36

D 24

E 22

F 40

G 31

H 19

I 22

J 10

K 0

L 9

Routing 

Table K

A 20

B 31

C 19

D 8

E 30

F 19

G 6

H 0

I 14

J 7

K 22

L 9

Routing 

Table H

Distance Vector Routing

Router

A

Router

J

Router

I
Router

H

Router

K

Router

B

Router

C

Router

D

Router

E

Router

F

Router

G
Router

L

Routing 

Table A

Routing 

Table I

Routing 

Table K
Routing 

Table H

JA Delay = 8

JI Delay = 10 

JH Delay = 12

JK Delay = 6

Example: Calculation the cost from J to G

Cost = Minimum(JA+AG , JI+IG , JH+HG , JK+KG)

Cost = Minimum(8+18 , 10+31 , 12+6 , 6+31)

Cost = Minimum(26 , 41 , 18 , 37) = 18 via H
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Distance Vector Routing

A 24

B 36

C 18

D 27

E 7

F 20

G 31

H 20

I 0

J 11

K 22
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Routing 
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E 14
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J 9

K 24
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Routing 

Table A

A 21

B 28

C 36

D 24

E 22

F 40
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I 22

J 10
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L 9

Routing 

Table K

A 20

B 31

C 19

D 8

E 30
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G 6

H 0

I 14

J 7

K 22

L 9

Routing 

Table H

Router

A

Router

J

Router

I
Router

H

Router

K

JA Delay = 8

JI Delay = 10 

JH Delay = 12

JK Delay = 6

Destin-

ation

New 

Cost

Through 

Neighbor

A 8 A

B 20 A

C 28 I

D 20 H

E 17 I

F 30 I

G 18 H

H 12 H

I 10 I

J 0 -

K 6 K

L 15 K

New Routing Table for J

Routing 

Table A

Routing 

Table I

Routing 

Table K

Routing 

Table H



Dr. Mohammed Arafah 81

Count-to-Infinity Problem 

Distance vector routing has a serious drawback in practice: although it

converges to the correct answer, it may do so slowly. In particular, it reacts

rapidly to good news, but slowly to bad news.

(a) Good News

(a) Bad News
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Link State Routing
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Link State Routing

Distance vector routing was used in the ARPANET until 1979, when it is

replaced by link state routing.

Two primary problems of distance vector routing:

1- Since the delay metric was queue length, it did not take line bandwidth

into accounts when choosing routes.

2- The algorithm often took too long to converge.

The basic idea is simple and can be stated as five parts:

Discover its neighbors and learn their network addresses.

Measure the delays or cost to each of its neighbors.

Construct a packet telling all it has learned.

Send this packet to all other routers.

Compute the shortest path to every other router.
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Learning about the Neighbors
When a router is booted, its first task to learn who its neighbors are.

It accomplishes this goal by sending a special HELLO packet on each point-to-

point. The router at the other end is expected to send back a reply telling who it

is (using a globally unique address).

When two or more router are connected by a LAN, the situation is slightly more

complicated. One way to model the LAN is to consider it as a node itself.

(a) Nine routers and a LAN. (b) A graph model of (a).
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Measuring Line Cost
The link state routing algorithm requires each router to know an estimate of the

delay to each of its neighbors.

It sends a special ECHO packet over the line that the other side is required to

send it back immediately. By measuring the round-trip time and dividing it by
two, the sending router can get a reasonable estimate of delay. For better results,

the test can be conducted several times, and the average is used.

An interesting issue is whether or not to consider the load when measuring the

delay. To factor the load in, the timer must be started when the ECHO packet is

queued. To ignore the load, the timer should be started when the ECHO packet

reaches the front of the queue.
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Measuring Line Cost

A subnet in which the East and West parts are connected by two lines.

Argument against Including the Load in the delay Calculation

Consider the given subnet, which is divided into two parts, East and West,

connected by two lines, CF and EI. Suppose the most of the traffic between East

and West is using line CF. Including the queueing delay in the shortest path

calculation will make EI more attractive. Then, CF will appear to be the shortest

path. As a result, the routing tables may oscillate widely.
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Building Link State Packets

(a) A subnet.  (b) The link state packets for this subnet.

Each router then builds a packet containing the following data:

Identity of the sender.

Sequence number.

Age.

A list of neighbors and their delays from the sender.

When to build the link state packets?

It can be either periodically or when some significant event occurs (line goes

down).



Dr. Mohammed Arafah 88

Distributing the Link State Packets

The fundamental idea is to use flooding to distribute the link state packets.

To manage the flooding operation, each packet contains a sequence number
that is incremented for each new packet sent. Routers keep track of all the

(source router, sequence) pairs they see.

When a new link state packet comes in, it is checked against the list of packets

already seen. If it is new, it is forwarded on all lines except the one it arrived

on.

If it is a duplicate, It is discarded.

If a packet with a sequence number lower than the highest one seen, it is

rejected as being obsolete.
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Distributing the Link State Packets

The algorithm has a few problems:

The sequence numbers wrap around. The solution is to use a 32-bit

sequence number.

If a router crashes, it will lose track of its sequence number.

Errors in the sequence numbers.

The solution of these problems is to the age for each packet, and decrement it

once per second. When the age hits zero, the information from the router is

discarded.

Some refinements to this algorithm make it more robust. When a link state

packet comes in to a router for flooding, it is queued for a short while first. If

another link state packet from the same source comes in before it is

transmitted, their sequence numbers are compared. If they are equal, the

duplicate is discarded. If they are different, the older one is thrown out.
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Distributing the Link State Packets

3

A 3

Source Seq.

Packet buffer for router B

65540
Single Bit Error  

in the Seq. 

A 65540

Source Seq.
Packet buffer for router B

5

65540

A 65540

Source Seq.

Packet buffer for router B

4

– If a sequence number is corrupted, and 65540 is received instead of 4 (a 1-bit error), packets 5

through 65540 will be rejected as obsolete, since the current sequence number is thought to be 65540.

– The solution is to include the age of each Link State Packet after the sequence number and decrement

it once per second. When the age hits zero, the information from the router is discarded.
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Distributing the Link State Packets

The packet buffer for router B
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Computing the New Routes

Once a router has accumulated a full set of link state packets, it can construct

the entire subnet graph because every link is represented.

Next Dijkstra’s algorithm can be run locally to construct the shortest path to

all possible destinations.



Dr. Mohammed Arafah 93

Hierarchical Routing

As networks grow in size, the router tables grow proportionally. This causes

the following:

Router memory is consumed by increasing tables.

More CPU time is needed to scan the router tables.

More bandwidth is needed to send status reports about them.

The basic idea of hierarchical routing is that routers are divided into regions,

with each router knowing all the details about how to route packets to

destination within its own region, but knowing nothing about the internal

structure of other regions.

For huge networks, a two-level hierarchy may be insufficient; it may be

necessary to group the regions into clusters, the clusters into zones, the zones

into groups, and so on.
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Hierarchical Routing
Routing in a two-level hierarchy with five regions.

When routing is done hierarchically, each router table contains entries for all

local routers and a single entry for each region.

Drawback: The shortest path might not be chosen (Example Router 5C).
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Broadcast Routing

Sending a packet to all destinations simultaneously is called broadcasting.

It can be implemented by various methods such as:

1. A source sends a distinct packet to each destination.

It wastes the bandwidth, and requires the source to have a complete list of

all destinations.

2. Flooding.

It is ill-suited for point-to-point communication: too many packets and

consumes too much bandwidth.

3. Multidimensional Routing:

Each packet contains a bit map indicating the desired destinations.

When a packet arrives at a router, the router checks all the destination to 

determine the set of output lines that will be needed. (An output line is 

needed if it is the best route to at least one of the destinations.)
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Broadcast Routing
4. Explicit use of the sink tree for the router initiating the broadcasting.

5. Reverse path forwarding:

When a broadcast packet arrives at a router, it checks to see if the packet 
arrived on the line that is normally used for sending packets to the source 
of the broadcast.  

If so, the router forwards copies of it to all outgoing lines except the one it 
arrived on.

If the broadcast packet arrived on a line other that the preferred one for 
reaching the source of the broadcast, the packet is discarded.

A Sink TreeA subnet  
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Broadcast Routing

Reverse path forwarding.  (a) A subnet.  (b) a Sink tree.  (c) The tree built by reverse path forwarding.
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A Sink Tree

Broadcast Routing

Number of copies of the broadcasting packet 14 copies

Maximum number of hops 4 hops

A subnet  
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Broadcast Routing

The tree built by reverse path forwarding.A Sink Tree

I

F H J N

A D A D G O M O

A Subnet

E C G D N K

L B

Number of copies of the broadcasting packet 24 copies

Maximum number of hops 5 hops

BH HL
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Multicast Routing
Sending a packet to group (subset of all destinations) is called Multicasting.

To do multicasting, group management is required. Some way is needed to

create and destroy groups, and for processes to join and leave groups.

(c) A multicast tree for group 1.  

(a) A network (b) A spanning tree for the leftmost router.   

(d) A multicast tree for group 2.
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Routing for Mobile Hosts

A WAN to which LANs, MANs, and wireless cells are attached.

People, who have portable computers, want to read their email and access 

their regular file systems wherever in the world they may be. These are called 

Mobile Hosts.
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Routing for Mobile Hosts

To route a packet to a mobile host, the network fist has to find it.

All users are assumed to have a permanent home location. Also, Users have a

permanent home address that can be used to determine their home location.

The mobile routing goal is to send packets to mobile users using their home

addresses, and have the packet efficiently reach them wherever they may be.

The world is divided up (geographically) into small units (typically, a LAN or

wireless cell). Each area has one or more foreign agents, which keep track of

all mobile users visiting the area. Also, each area has a home agent, which

keep track of users whose home is in this area, but who are currently visiting

another area.
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Routing for Mobile Hosts

When a user enters an area, his computer must register itself with the foreign agent 
there according to the following typical registration procedure:

1. Periodically, each foreign agent broadcasts a packet announcing its existence and 
address. A newly arrived mobile host may wait for one of these messages, but if 
none arrives quickly enough, the mobile host can broadcast a packet saying: “Are 
there any foreign agents around?”

2. The mobile host registers with the foreign agent, giving its home address and 
other information.

3. The foreign host contacts the mobile host’s home agent and says: “One of your 
hosts is over here.” The message contains the network address of the foreign 
agent and some security information.

4. The home agent examines the security information, which contains a timestamp. 
If it is approved, it informs the foreign agent to proceed.

5. When the foreign agent gets the acknowledgement from the home agent, it makes 
an entry in its table and informs the mobile host that it is registered.



Dr. Mohammed Arafah 104

Routing for Mobile Hosts

Packet routing for mobile users.

When a user leaves an area, it should cancel his registration.

After registration, what does happen when a packet is sent to a mobile user?


