Nerve Tissue

Descriptive Histology 272

13 Oct. 2019

Introduction to Nerve system

- The human nervous system is the most complex system in the body histologically and physiologically
- Formed by a network of many billion nerve cells (neurons), all assisted by many more supporting glial cells.
- Each neuron has hundreds of interconnections with other neurons forming the body integrated communications network

Development of Nerve Tissue

The nervous system develops from the outer embryonic

layer, the **Ectoderm**, beginning in the third week of

human embryonic life

https://www.youtube.com/watch?v=cUGuWh2UeMk

The nervous system divide into

- Central nervous system (CNS), consisting of the
- Brain

Spinal cord

The nervous system divide into

Peripheral nervous system (PNS), composed of the cranial, spinal, and peripheral nerves conducting impulses to and from the CNS (motor and sensory nerves respectively) and ganglia which are small groups of nerve cells outside the CNS

Structural and functional divisions of the nervous system

Organization	Components	General description				
Structural divisions:						
Central nervous system (CNS)	Brain and spinal cord	Overall "command center," processing and integrating information				
Peripheral nervous system (PNS)	Nerves and ganglia	Receives and projects information to and from the CNS; mediates some reflexes				

Functional divisions:					
	Components	General description			
Sensory nervous system	Some CNS and PNS components	Includes all axons that transmit impulses from a peripheral structure to the CNS			
	Somatic sensory	Transmits input from skin, fascia, joints, and skeletal muscles			
	Visceral sensory	Transmits input from stomach and intestines (viscera)			
Motor nervous system	Some CNS and PNS components	Includes all axons that transmit nerve impulses from the CNS to a muscle or gland			
	Somatic motor (somatic nervous system)	Voluntary control of skeletal muscle			
	Autonomic motor (autonomic nervous system)	Involuntary control of smooth muscle, cardiac muscle, and glands			

The Nervous System

Peripheral Nervous System

Nerve tissue

Nerve tissue consists of two cell types:

- Nerve cells, or neurons, which usually show numerous long processes
- Glial cells (Gr. glia, glue), which have short processes, support and protect neurons, and participate in neural activity, neural nutrition, and defense of cells in the central nervous system.

The functional unit in both the CNS and PNS is the

neuron or nerve cell

- Neuron consist of:
 - Cell Body or Perikaryon
 - Dendrites
 - Axon

Nucleus Cell body Axon hillock Axon

Dendrites

Chromatophilic

substances

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com

b

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Neurons Classification

Neurons can be classified according to the number of processes extending from the cell body:

- Multipolar neurons, which have one axon and two or many dendrites;
- **Bipolar neurons,** with one dendrite and one axon
- Unipolar or pseudounipolar neurons, which have a single process that bifurcates close to the perikaryon, with the longer branch extending to a peripheral ending and the other toward the CNS.
- Anaxonic neurons: with many dendrites but no true axon

Source: Mescher AL: Junqueira's Basic Histology, 13th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Mescher AL: Junqueira's Basic Histology, 13th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Mescher AL: Junqueira's Basic Histology, 13th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Mescher AL: Junqueira's Basic Histology, 13th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Neurons Classification con.

- Neurons can also be subdivided according to their functional roles
 - Sensory (afferent) neurons are involved in the reception of sensory stimuli from the environment and from within the body.
 - Motor (efferent) neurons control effector organs such as muscle fibers and exocrine and endocrine glands.
 - Interneurons establish relationships among other neurons, forming complex functional networks or circuits (as in the retina).

Structure of the Neuron

Myelin Sheath

- > a white, multi layered, fatty covering some nerve processes.
- arranged in segments, separated by <u>Node of Ranvier</u>

Function

- Insulation of nerve process
- Increased speed of conduction

Neurilemma

- outer layer of myelin sheath
- essential for regeneration

Synaptic Communication

Synapse has the following structure:

- Presynaptic axon terminal (terminal bouton) from which neurotransmitter is released,
- Postsynaptic cell membrane with receptors for the transmitter and ion channels or other mechanisms to initiate a new impulse,
- 20–30 nm wide intercellular space called the synaptic cleft separating the presynaptic and postsynaptic membranes.

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

http://www.youtube.com/watch?v=LT3VKAr4roo

Axodendritic synapse

Axoaxonic synapse

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com

Glial Cells & Neuronal Activity

Origin and principal functions of neuroglial cells.

Glial Cell Type	Origin	Location	Main Functions
Oligodendrocyte	Neural tube	CNS	Myelin production, electrical insulation
Schwann cell (Neurolemmocyte)	Neural crest	Peripheral nerves	Myelin production, electrical insulation
Astrocyte	Neural tube	CNS	Structural and metabolic support of neurons; BBB; repair processes
Satellite cells (of ganglia)	Neural crest	Peripheral ganglia	Structural and metabolic support for neuronal cell bodies
Ependymal cell	Neural tube	Line ventricles and central canal of CNS	Aid production and movement of CSF
Microglia	Bone marrow (monocytes)	CNS	Defense and immune-related activities

CNS Glial Cells

a Oligodendrocyte

b Astrocyte

Meninges

The **meninges** are three layers of protective tissue called the dura mater, arachnoid mater, and pia mater that surround the neuraxis.

Dura mater -- outer layer lining skull Arachnoid (mater) -- contains blood vessels Subarachnoid space -- filled with CSF Pia mater -- covers brain

Cerebrospinal fluid

Cerebrospinal fluid (CSF) is **found** in the subarachnoid space of the brain (within the ventricles) and **spinal** canal. It is produced by the choroid plexus in the ventricles of the brain and the **cerebral** vessels, at the rate of 500 ml/day.

http://www.youtube.com/watch?v=7-JHh5a_owc