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In this paper, we construct a new hierarchy based on the third q-discrete Painlevé equation (qPIII) and also study
the hierarchy of the second q-discrete Painlevé equation (qPII). Both hierarchies are derived by using reductions
of the general lattice modified Korteweg-de Vries equation. Our results include Lax pairs for both hierarchies
and these turn out to be higher degree expansions of the non-resonant ones found by Joshi and Nakazono [29]
for the second-order cases. We also obtain Bäcklund transformations for these hierarchies. Special q-rational
solutions of the hierarchies are constructed and corresponding q-gamma functions that solve the associated
linear problems are derived.
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1. Introduction

Following widespread interest in the Painlevé equations, it is natural to ask whether their integrable
discrete versions share their fundamental properties. In this paper, we consider and answer the
following question about multiplicative or q-discrete Painlevé equations, namely the construction
of new associated infinite sequences of discrete equations called hierarchies. The term ‘hierarchy’
here refers to a sequence of q-difference equations sharing a linear problem.

In the literature, discrete hierarchies are known for some additive discrete Painlevé [10,16], and
q-discrete Painlevé equations [21,32,45] but not for most of the known discrete Painlevé equations.
Our paper extends the class of known hierarchies of q-discrete Painlevé equations by providing a
new hierarchy, associated with the q-discrete third Painlevé equation.

∗current email: halrashidi@ksu.edu.sa

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

453



H. Alrashdi et al. / Hierarchies of q-discrete Painlevé equations

Our approach starts with an integrable partial difference equation, also known as a lattice equa-
tion, and considers higher-order reductions than those that have been constructed before. (See for
example [19, 25, 34, 37–39].) Our starting point is equation (3.1), which is a slightly more gen-
eral (multi-parameter) form of a standard lattice equation denoted by Hδ=0

3 in the ABS classifica-
tion [3,4]. Further background information about lattice equations is given for the interested reader
in §1.1.

In particular, we obtain two q-discrete hierarchies, whose starting points are the q-discrete sec-
ond and third discrete Painlevé equations, denoted by qPII and qPIII respectively below. We will
refer to the nth member of the respective hierarchies by qP(n)

II , qP(n)
III . In fact, we also obtain addi-

tional hierarchies, but we focus on qPII and qPIII here to provide a self-contained exposition. The
term hierarchy is used because each sequence shares a linear problem, which is one of a pair of
linear problems known as Lax pairs. The corresponding Lax pairs have the form

Φ(qx, t) = A(x, t)Φ(x, t), (1.1a)

T (Φ(x, t)) = B(x, t)Φ(x, t), (1.1b)

where T is a time-deformation operator, whose action iterates the Painlevé variable t in the resulting
hierarchy. The variables x and t are often called spectral and Painlevé variables respectively. The
matrix A is polynomial in x and given by equations (1.3), while B is given by equation (1.6) or (1.9).
(See our main result Theorem 1.1 in §1.2.)

For Equations (1.1a) and (1.1b) to be compatible, we must have

T (A(x, t))B(x, t) = B(qx, t)A(x, t). (1.2)

For each n ∈ N corresponding to the degree of A in x, we show that equation (1.2) gives rise to
either qP(n)

II or qP(n)
III (corresponding to the choice of B). Equations (1.8) and (1.11) in Section 2 give

the complete form of these hierarchies. In the same way that qPII is a symmetric case (or projective
reduction) of qPIII, we can show that the nth member of the qPII hierarchy can be obtained from the
nth member of the qPIII hierarchy.

Previous approaches [10, 21] for constructing hierarchies have started by extending the degree
of the matrix A in x and using the resulting compatibility conditions to derive new equations. The
key idea here relies on fixing one matrix while we change the degree of the other one. However, the
calculations are not straightforward, and become more technical in the case of q-discrete equations.
Instead, we pursue a simpler approach given by higher-order reductions of systems of lattice equa-
tions, as explained in Section 3. In finding the appropriate reductions, we were motivated by the
Lax pairs and the actions of the time-deformation operator T on parameters given in [29], which
allow us to hypothesize the lattice parameters that we use for the reductions.

Given an integer d, a well-known procedure for finding reductions of lattice equations gov-
erning a function x(l,m) is to assume a periodic (d,1)-reduction, i.e., impose xl,m+1 = xl+d,m or
xl,m+1 = 1/xl+d,m. Such periodic reductions of the lattice mKdV (modified Korteweg-de Vries)
equation, also known as H3, were obtained for some integer d in [21]. We note that this led to a qPII

hierarchy, which we also find here. However, the calculations are intricate and further assumptions
were required to find Lax pairs. In contrast, our approach immediately provides hierarchies as well
as their Lax pairs, without intermediate assumptions.

The 2× 2 Lax pairs we find have certain advantages for analysis. The most important proper-
ties are that each matrix A corresponding to a member of the hierarchy is non-singular at x = 0
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and ∞ and explicitly factorisable into linear factors in x. The former property enables Birkhoff
and Carmichael’s classical theory of non-resonant q-linear difference equations [6, 9] to be applied
immediately.

1.1. Background

In this section, we provide some background material about Painlevé and discrete Painlevé equa-
tions, and integrable lattice equations.

The Painlevé equations appear widely in physical applications (see for example [46]). They
were discovered originally by Painlevé [40], Gambier [14] and Fuchs [13] in the search for new
transcendental functions that satisfy ordinary differential equations (ODEs) and their general solu-
tions are known to be higher transcendental functions, called the Painlevé transcendents. Later, they
were found as reductions of completely integrable partial differential equations (PDEs), such as the
Korteweg-de Vries equation [1, 2]. More recently, integrable difference equations with properties
that are very similar to those of the classical Painlevé equations have been identified. They are now
known as discrete Painlevé equations and there are three types. We focus here on discrete Painlevé
equations of q-discrete or multiplicative type; see Sakai [43].

The search for discrete versions of integrable PDEs has also been a very active area of recent
research. Many partial difference equations with properties that are very similar to those of inte-
grable PDEs are known to share a geometric property called consistency around a cube (CAC) or
multi-dimensional consistency [35,36]. Classifications of scalar equations with this property [3,4,7]
led to a list of scalar partial difference equations. By convention, they are denoted as A-, D-, H- or
Q-type. In this paper, we focus on an example of H-type, denoted H3, which is also known as a
lattice mKdV equation.

Many reductions of lattice equations to the q-discrete Painlevé equations are already known
[8, 12, 19, 22, 23, 26, 34, 37–39]. For example, the qPII and qPIII equations were derived from a so-
called geometric reduction of H3 and a special case of an equation labelled D4 in [7]; see [30].

Motivated by the existence of hierarchies (infinite sequences) of PDEs associated with each
integrable PDE, hierarchies of Painlevé equations have also been found [15, 28]. Correspondingly,
hierarchies for a restricted set of discrete Painlevé equations have also been obtained [10, 21, 33].
However, to the best of our knowledge, very few q-discrete Painlevé hierarchies have been con-
structed.

Although generic solutions of discrete Painlevé equations are higher transcendental functions,
there also exist special function and rational solutions for special cases of parameters. Each such
special-parameter case can be mapped to another through transformations called Bäcklund trans-
formations [24]. Explicit solutions of qPII were studied and corresponding solutions of its Lax pair
found in [31].

Starting with a seed solution corresponding to an initial parameter, one can generate an infi-
nite series of solutions of the same equation with different parameters, provided that the Bäcklund
transformation we use does not terminate. Confusingly, the word hierarchy may also be used in this
context to refer to an infinite sequence of solutions generated by a Bäcklund transformation when
successively applied to a seed solution.
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1.2. Main Result

Our main result shows that each member of the hierarchy of qPII and qPIII shares one spectral linear
problem equation (1.1a), with the coefficient matrix given by

A(x, t) =
n

∏
j=0

An− j, n> 2, (1.3a)

where

Al :=

(
− iblλ

hl
x 1

−1 − iblhl
λ

x

)
. (1.3b)

Here, bl , l = 0,1, ...,n, λ and q are the non-zero complex parameters and hl , l = 0,1, ...,n are
dependent variables. We find that the product of all hl turns out to be constant in the case of the qPII

and qPIII hierarchies. We take this constant to be λ 2 without loss of generality, to match with the
second-order case given in [29], that is,

n

∏
j=0

h j = λ
2. (1.4)

We also take

bn = q (1.5)

to match with the base cases given in the same paper [29] . In fact, one can take bn to be any constant
from the construction in Section 3.

We use the following notation. Given 2 6 n ∈ N, the nth member of the hierarchy will be
described by using a deformation operator referred to as T̃ and T̂ for the case associated with
qPII and qPIII respectively. These operators act on a set of parameters and independent variables
denoted by b0, b1, . . . , bn, λ , q, x and on the dependent variables, which we will denote by h0, . . .,
hn.

The following theorem collects our main results.

Theorem 1.1. Let n ∈ N, n ≥ 2. The compatibility condition (1.2) is satisfied on solutions of the
qPII and qPIII hierarchy respectively when {T ,B} is replaced by one of the following choices:

(1) {T̃ , BII} and (2) {T̂ , BIII}. The qPII and qPIII hierarchies are given as follows.

(1) Take

BII =

(
− ib0λ

h0
x 1

−1 − ib0h0
λ

x

)
, (1.6)

and define T̃ by the action

T̃ : (b0,b1, ...,b j, ...,bn−1,bn,λ ,q,x)→ (b1,b2, ...,b j+1, ...,qb0,bn,λ ,q,x). (1.7)
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Then the resulting hierarchy of equations is given by
T̃ (hr) =hr+1, 06 r 6 n−2,

T̃ (hn−1) =
λ 2(1+b0 ∏

n−1
j=1 h j)

∏
n−1
j=0 h j(b0 +∏

n−1
j=1 h j)

.
(1.8)

(2) Take

BIII =

(
− ib1λ

h1
x 1

−1 − ib1h1
λ

x

)(
− ib0λ

h0
x 1

−1 − ib0h0
λ

x

)
, (1.9)

and define T̂ by the action

T̂ : (b0,b1, ...,b j, ...,bn−2,bn−1,bn,λ ,q,x)→ (b2,b3, ...,b j+2, ...,b0q,b1q,bn,λ ,q,x), (1.10)

Then the resulting hierarchy of equations is given by

T̂ (hr) =hr+2, 06 r 6 n−3,

T̂ (hn−2) =
λ 2(1+b0 ∏

n−1
j=1 h j)

∏
n−1
j=0 h j(b0 +∏

n−1
j=1 h j)

,

T̂ (hn−1) =
λ 2
(

1+b1
(

∏
n−1
j=2 h j

)
T̂ (hn−2)

)
(

∏
n−1
j=1 h j

)
T̂ (hn−2)

(
b1 +

(
∏

n−1
j=2 h j

)
T̂ (hn−2)

) .
(1.11)

Remark 1.1. Variables hl (l = 0,1, . . . ,n) are functions of t on which these operators T̃ and T̂ act
respectively as follows{

t→ pt = q
1
n t, for equation (1.8) by taking b0 = t, b1 = q

1
n t,

t→ pt = q
2
n t, for equation (1.11) by taking b0 = t, b1 = bt,b2 = q

2
n t,b3 = bq

2
n t for even n,

where b is a constant for the latter case. For the former case, one can easily see that b1 = pt =
T̃ (t) = T̃ (b0). Similarly, for the latter case we have b2 = T̂ (b0), b3 = T̂ (b1). Using these operators,
we find that{

b j = q
j
n t for 06 j 6 n−1, for equation (1.8),

b2 j = q
2 j
n t, b2 j+1 = bq

2 j
n t, for even n and 06 j 6 n/2, for equation (1.11).

Remark 1.2. The results of Theorem 1.1 can be separated into two hierarchies in each case. These
are distinguished by whether n is odd or even. The cases corresponding to odd n reduce to one of
lower order in each case. At the base level, we get degenerate limits of qPII and qPIII. See further
details for the case n = 3 in Remark 2.1.

Remark 1.3. It is intriguing to note that the Lax pair A(x, t) given in (1.3) has a form that is
analogous to the one given by Kajiwara et al [32]. This is because these matrices both come from
periodic reductions of lattice equations.a

Because of the observations in Remarks 1.2 and 2.1, we will assume that n is even in the remain-
der of the paper. (Nevertheless, all the results are satisfied also for the case when n is odd.)

aWe would like to thank the referee for this observation.
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1.3. Outline of the paper

This paper is organized as follows. In Section 2, we provide examples of the first and second mem-
bers of each hierarchy. In Section 3, we use periodic reductions of the general mKdV to derive
the hierarchies of q-discrete second and third Painlevé equations. Their associated Lax pairs and
Bäcklund transformations are obtained automatically from this method, in Sections 3 and 4. In Sec-
tion 5 we describe the rational solutions of the hierarchies and deduce the corresponding solutions
of their associated Lax pairs.

2. Second- and Fourth-order members of the hierarchies

In this section, we consider the cases n = 2, 3, 4 in Theorem 1.1 explicitly. The case n = 2 cor-
responds to the well-known qPII and qPIII equations. The case n = 4 is the next member of the
hierarchy corresponding to each of these equations. The odd case where n = 3 is deduced here for
illustrative purposes, to show that the result is a second-order equation that is a degenerate version
of qPII and qPIII. Thereafter, we will refer to the iteration of the variable hl (l = 0, . . . ,n) under the
deformation operators T̃ and T̂ by h̃l and ĥl , respectively.

2.1. The case nnn === 222

In this subsection, we consider the case n = 2 in Theorem 1.1. Recall that equations (1.5) and (1.4)
give the constraints

h0h1h2 = λ
2 and b2 = q.

Note that the deformation operators are given as follows

T̃ : (b0,b1,b2,λ ,q)→ (b1,qb0,b2,λ ,q),

T̂ : (b0,b1,b2,λ ,q)→ (qb0,qb1,b2,λ ,q).

So the first members of the qPII and qPIII hierarchies are given by following equations

qP(2)
II :


h̃0 = h1,

h̃1 =
λ 2(1+b0h1)

h0h1(b0 +h1)
,

(2.1)

qP(2)
III :


ĥ0 =

λ 2(1+b0h1)

h0h1(b0 +h1)
,

ĥ1 =
λ 2(1+b1ĥ0)

ĥ0h1(b1 + ĥ0)
.

(2.2)

Equations (2.1) and (2.2) are the second order of the q-discrete second and third Painlevé equations
given in [29].

2.2. The case nnn === 333

Remark 2.1. For the case where n is odd, we can always reduce the order of the associated equa-
tions by unity, and that leads to a degenerate version of the hierarchy.
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We consider the case n = 3 to illustrate the argument. Recall that equations (1.4) and (1.5) give
the constraints

h0h1h2h3 = λ
2 and b3 = q.

Note that the deformation operators are given as follows

T̃ : (b0,b1,b2,b3,λ ,q)→ (b1,b2,qb0,b3,λ ,q),

T̂ : (b0,b1,b2,b3,λ ,q)→ (b2,qb0,qb1,b3,λ ,q).

We consider each case listed in Theorem 1.1 separately below.

(1) We obtain

h̃0 = h1, h̃1 = h2, h̃2 =
λ 2(1+b0h1h2)

h0h1h2(b0 +h1h2)
,

which is equivalent to

˜̃̃
h0 =

λ 2(1+b0h̃0
˜̃h0)

h0h̃0
˜̃h0(b0 + h̃0

˜̃h0)
. (2.3)

Defining h̃0
˜̃h0 = f , equation (2.3) becomes

f̃
˜
f =

λ 2(1+b0 f )
(b0 + f )

. (2.4)

The resulting equation is a degenerate version of the qPII equation that was first obtained in [42];
for details see [17, 18, 42].

(2) We obtain

ĥ0 = h2, ĥ1 =
λ 2(1+b0h1h2)

h0h1h2(b0 +h1h2)
and ĥ2 =

λ 2(1+b1h2ĥ1)

h1h2ĥ1(b1 +h2ĥ1)
,

which is equivalent to

ĥ1h1 =
λ 2(1+b0h1ĥ0)

h0ĥ0(b0 +h1ĥ0)
and ˆ̂h0ĥ0 =

λ 2(1+b1ĥ1ĥ0)

h1ĥ1(b1 + ĥ1ĥ0)
. (2.5)

Defining f = h0h1 and g = ĥ0h1, equation (2.5) becomes

f̂ f =
λ 2(1+b0g)
(b0 +g)

, ĝg =
λ 2(1+b1 f̂ )
(b1 + f̂ )

. (2.6)

The cases listed above cover all the possibilities for n = 3. These illustrate the assertion made in
Remark 2.1. The general case of odd n will be consider in a separate paper.
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2.3. The case nnn === 444

Here we consider the second member (fourth-order) of the qPII and qPIII hierarchies. Recall that
equations (1.4) and (1.5) give the constraints

h0h1h2h3h4 = λ
2 ang b4 = q.

Noting that the deformation operators are given by

T̃ : (b0,b1,b2,b3,b4,λ ,q)→ (b1,b2,b3,qb0,b4,λ ,q),

T̂ : (b0,b1,b2,b3,b4,λ ,q)→ (b2,b3,qb0,qb1,b4,λ ,q),

we obtain the second member of the qPII and qPIII hierarchies as follows

qP(4)
II :


h̃0 = h1, h̃1 = h2, h̃2 = h3,

h̃3 =
λ 2(1+b0h1h2h3)

h0h1h2h3(b0 +h1h2h3)
,

(2.7)

or, equivalently

˜̃h2
˜̃
h2 =

λ 2(1+b0
˜
h2h2h̃2)

˜
h2h2h̃2(b0 +

˜
h2h2h̃2)

. (2.8)

Moreover, we have

qP(4)
III :



ĥ0 = h2, ĥ1 = h3,

ĥ2 =
λ 2(1+b0h1h2h3)

h0h1h2h3(b0 +h1h2h3)
,

ĥ3 =
λ 2(1+b1h2h3ĥ2)

h1h2h3ĥ2(b1 +h2h3ĥ2)
,

(2.9)

or, equivalently 
ĥ2

ˆ
h2 =

λ 2(1+b0
ˆ
h3h2h3)

ˆ
h3h2h3(b0 +

ˆ
h3h2h3)

,

ĥ3
ˆ
h3 =

λ 2(1+b1h2h3ĥ2)

h2h3ĥ2(b1 +h2h3ĥ2)
.

(2.10)

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by applying a periodic reduction, often called a staircase
method, to a lattice equation, which is a multi-parametric version of the discrete modified mKdV
equation, given by

Q(w0,w1,w2,w12;αi,βi) = α1w0w2−α2w1w12−β1w0w1 +β2w2w12 = 0, (3.1)

where the arguments w0,w1,w2,w12 are associated with vertices of a quadrilateral. Interpreting these
as points on a lattice with directions l and m, we assume w0 = wl,m, w1 = wl+1,m, w2 = wl,m+1, and
w12 = wl+1,m+1, as shown in Figure 3.1.
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wl,m+1 wl+1,m+1

wl+1,mwl,m

α1, α2

β1
β2

w3 w13

w1α1 ,α2

γ1
γ2

β1
β2

w0

w23 w123

w2 w12

Fig. 3.1 Quad equation and CAC

Note that αi and βi, i = 1,2 are parameters, which may also depend on l and m. We assume
that the parameters (α1,α2) and (β1,β2) correspond to the l and m directions respectively on the
lattice and embed this equation in a cube with a third direction associated with parameters (γ1,γ2),
see Figure 3.1 cf. [47].

It is easy to check that if we put the equation with respective associated parameters on each face
of the cube and initial values are given at vertices w0,w1,w2,w3, we obtain the same value of w123

from the three possible ways of computing it [3, 24]. This property is called consistency around a
cube, or CAC.

The Lax pair of the lattice mKdV equation is well known [24]. In Appendix A,
we provide a derivation of the following Lax pair whose compatibility condition, namely
M(w1,w12,β1,β2,x)L(w0,w1,α1,α2,x) = L(w2,w12,α1,α2,x)M(w0,w2,β1,β2,x) is the multi-
parametric equation (3.1):

L(w0,w1,α1,α2,x) =

(
−α1w0

w1
x l1

l2 −α2w1
w0

x

)
,

M(w0,w2,β1,β2,x) =

(
−β1w0

w2
x l1

l2 −β2w2
w0

x

)
,

(3.2)

where we consider l1 and l2 as constants and x as a spectral variable.

3.1. qqqPII hierarchy

In this section, suppose n > 2 is a given, fixed integer. We will derive the qPII hierarchy by using
the (n,1)-reduction of equation (3.1) i.e., by imposing wl,m = wl+n,m+1 and taking ui = wl,m where
i = l−nm [37, 41].

Figure 3.2 represents this reduction with associated parameters, which are different on each
edge. Consider the last edge on the horizontal line in this figure, which joins un to un+1. We assume
that the corresponding parameters are given by (qα0,1,qα0,2). This can be seen as a non-autonomous
reduction of the general mKdV.

On the quadrilateral on the right of Figure 3.2, we have the equation Q(un,un+1, u0,u1;
qα0,1,qα0,2,β1,β2) = 0, which is given by

qα0,1unu0−qα0,2un+1u1−β1unun+1 +β2u0u1 = 0.

We can solve for un+1 from this equation to find the shift map

S : (u0,u1, ...,un−1,un;α0,i, . . . ,αn−1,i)

7−→ (u1,u2, ...,un,un+1;α1,i, . . . ,αn−1,i,qα0,i)
(3.3)
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u2 u3 un−1 un

u0

α2,i
u1u0 α0,i α1,i

un+1

u1

αn−1,i

βi

qα0,i

qα0,i

βi

Fig. 3.2 The (n,1)-reduction of mKdV associated with the qPII hierarchy.

where i = 1,2 and

un+1 =
u0 (qα0,1un +β2u1)

qα0,2u1 +β1un
.

Let h j = u j+1/u j for j = 0,1,2, ...,n−1, then we obtain the map

T̃ : (h0,h1, . . . ,hn−1,α0,i, . . . ,αn−1,i)

7−→
(

h1,h2, . . . ,hn−1, T̃ (hn−1),α1,i, . . . ,αn−1,i,qα0,i

)
,

(3.4)

where

T̃ (hn−1) := h̃n−1 =
qα0,1h1h2 . . .hn−1 +β2

h0h1 . . .hn−1 (qα0,2 +β1h1h2 . . .hn−1)
. (3.5)

We note that the map (3.4) with (3.5) is a general version of the qPII hierarchy given in Theorem 1.1.
Now we will construct the Lax pair for the map (3.4) from the reduction described in Figure 3.2.

We start by constructing a monodromy matrix associated with the (n,1)-reduction (see [41]). Walk-
ing along the vertices labelled by u0 in Figure 3.2, we have steps taken along horizontal edges,
which are represented by L, and one step up in the vertical, which is represented by M, leading to
the composition:

L = (M(un,u0,β1,β2,x))L(un−1,un,αn−1,1,αn−1,2,x)L(un−2,un−1,αn−2,1,αn−2,2,x)

..... L(u1,u2,α1,1,α1,2,x)L(u0,u1,α0,1,α0,2,x).
(3.6)

This matrix L is called a monodromy matrix.
Applying the deformation T̃ on L we have

T̃ (L ) = (M(un+1,u1,β1,β2,x))L(un,un+1,qα0,1,qα0,2,x)L(un−1,un,αn−1,1,αn−1,2,x)

.....L(u2,u3,α2,1,α2,2,x)L(u1,u2,α1,1,α1,2,x).
(3.7)

The Lax pair for the quad-equation Q(un,un+1,u0,u1,qα0,1,qα0,2,β1,β2) = 0 is given by

M(un+1,u1,β1,β2,x)L(un,un+1,qα0,1,qα0,2,x)

= L(u0,u1,qα0,1,qα0,2,x)M(un,u0,β1,β2,x).

Substitute this in equation (3.7), we get

T̃ (L ) = L(u0,u1,qα0,1,qα0,2,x)M(un,u0,β1,β2,x)L(un−1,un,αn−1,1,αn−1,2,x)

.....L(u2,u3,α2,1,α2,2,x)L(u1,u2,α1,1,α1,2,x),

= L(u0,u1,qα0,1,qα0,2,x)L (L(u0,u1,α0,1,α0,2,x))−1,

= L(u0,u1,α0,1,α0,2,qx)L (L(u0,u1,α0,1,α0,2,x))−1,
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where we have used L(αi,qx) = L(qαi,x).
Thus, we get

T̃ (L )L(u0,u1,α0,1,α0,2,x) = L(u0,u1,α0,1,α0,2,qx)L .

Letting A = L and B = L(u0,u1,α0,1,α0,2,x), we obtain a Lax pair of qPII hierarchy.
Taking the parameters as the following

β1 = ibn/λ , β2 = ibnλ , αl,1 = iblλ , and αl,2 = ibl/λ , (3.8)

where l = 0,1, ...,n−1, and bn = q, we obtain the hierarchy of qPII given by (1.8).

3.2. qqqPIII hierarchy

First of all, we notice that the deformation operator of qPIII (T̂ ) is a two-fold composition of the
deformation operator of qPII (T̃ ), (i.e. T̂ = T̃ 2). Hence, we use the same methods with one extra
iteration of the reduction and the corresponding Lax matrices L and M.

We consider the hierarchy of qPIII starting with (n,1)-reduction, and it can be described by the
following Figure:

u2 u3 un−1 un

u0

α2,i

u1u0

α0,i

α1,i un+1

u1

αn−1,i

βi

qα0,i

qα0,i

βi

un+2

u2

qα1,i

βi

qα1,i

Fig. 3.3 The (n,1)-reduction of mKdV associated with the qPIII hierarchy.

On the quadrilateral on the right of Figure 3.3, we have the following equations

Q(un,un+1,u0,u1;qα0,i,βi) = 0,

Q(un+1,un+2,u1,u2;qα1,i,βi) = 0,

which are given by

qα0,1unu0−qα0,2un+1u1−β1unun+1 +β2u0u1 = 0, (3.9)

qα1,1un+1u1−qα1,2un+2u2−β1un+1un+2 +β2u1u2 = 0. (3.10)

We can solve for un+1 and un+2 from these two equations to find the map

(u0,u1, ...,un−1,un;α0,i,α1,i, . . . ,αn−1,i)

7−→ (u2,u3, ...,un+1,un+2;α2,i,α3,i, . . . ,αn−1,i,qα0,i,qα1,i).

Similar to the hierarchy of qPII, we define h j =
u j+1
u j

where j = 0,1,2, ...,n−1. Taking parameters
as (3.8), where bn = q, then we obtain the map

T̂ : (h0,h1, ...,hn−2,hn−1;b0,b1, . . . ,bn−2,bn−1,bn)

7−→ (h2,h3, ..., T̂ (hn−2), T̂ (hn−1);b2,b3, . . . ,qb0,qb1,bn),
(3.11)
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where

T̂ (hn−2) := ĥn−2 =
λ 2(b0 ∏

n−1
i=1 hi +1)

∏
n−1
i=0 hi(b0 +∏

n−1
i=1 hi)

,

T̂ (hn−1) := ĥn−1 =
λ 2(b1ĥn−2 ∏

n−1
i=2 hi +1)

ĥn−2 ∏
n−1
i=1 hi(b1 + ĥn−2 ∏

n−1
i=2 hi)

.

(3.12)

We note that the map (3.11) with (3.12) is the qPIII hierarchy given in Theorem 1.1.
Now as in the qPII hierarchy, we will construct the Lax pair for the map (3.11) from the reduction

described in Figure 3.3. Similarly, the monodromy matrix associated with the (n,1)-reduction is
given by

L = M(un,u0,β1,β2,x)L(un−1,un,αn−1,1,αn−1,2,x)L(un−2,un−1,αn−2,1,αn−2,2,x)

.....L(u1,u2,α1,1,α1,2,x)L(u0,u1,α0,1,α0,2,x).
(3.13)

Applying the deformation T̂ on L we have

T̂ (L ) = M(un+2,u2,β1,β2,x)L(un+1,un+2,qα1,1,qα1,2,x)L(un,un+1,qα0,1,qα0,2,x)

.....L(u3,u4,α3,1,α3,2,x)L(u2,u3,α2,1,α2,2,x).
(3.14)

The Lax pairs for the quad-equations

Q(un,un+1,u0,u1;qα0,1,qα0,2,β1,β2) = 0,

and

Q(un+1,un+2,u1,u2;qα1,1,qα1,2,β1,β2) = 0,

satisfy

M(un+1,u1,β1,β2,x)L(un,un+1,qα0,1,qα0,2,x)

= L(u0,u1,qα0,1,qα0,2,x)M(un,u0,β1,β2,x),
(3.15)

and

M(un+2,u2,β1,β2,x)L(un+1,un+2,qα1,1,qα1,2,x)

= L(u1,u2,qα1,1,qα1,2,x)M(un+1,u1,β1,β2,x).
(3.16)

Using (3.16) and (3.15) in equation (3.14), we get

T̂ (L ) = L(u1,u2,qα1,1,qα1,2,x)M(un+1,u1,β1,β2,x)L(un,un+1,qα0,1,qα0,2,x)

.....L(u3,u4,α3,1,α3,2,x)L(u2,u3,α2,1,α2,2,x),

= L(u1,u2,qα1,1,qα1,2,x)L(u0,u1,qα0,1,qα0,2,x)M(un,u0,β1,β2,x)

L(un−1,un,αn−1,1,αn−1,2,x).....L(u2,u3,α2,1,α2,2,x)

= L(u1,u2,qα1,1,qα1,2,x)L(u0,u1,qα0,1,qα0,2,x)L (L(u0,u1,α0,1,α0,2,x))−1

(L(u1,u2,α1,1,α1,2,x))−1,
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where we have used L(αi,qx) = L(qαi,x).
Thus, we obtain

T̂ (L )L(u1,u2,α1,1,α1,2,x)L(u0,u1,α0,1,α0,2,x) =

L(u1,u2,α1,1,α1,2,qx)L(u0,u1,α0,1,α0,2,qx)L .

If we take A =L , B = L(u1,u2,α1,1,α1,2,x)L(u0,u1,α0,1,α0,1,x), we have the Lax pair of qPIII

hierarchy.

Remark 3.1. The entries (1,2) and (2,1) of matrix A j, which we choose to be 1 and −1 in the
matrices, can be replaced with any constants and the compatibility condition still holds.

4. Bäcklund Transformations of the hierarchies

One of the interpretations of CAC property is a connection with Bäcklund transformations. The
CAC property can be regarded as a Bäcklund transformation between a top and a bottom equation
in a cube [5]. It can be described as follows.

We consider the following quad-equation which is CAC

Q(u0,u1,u2,u12;α,β ) = 0. (4.1)

We then embed this equation (4.1) in the third direction associated with variables v and lattice
parameters γ , this parameter will be a Bäcklund transformation parameter (see Figure 3.1 where w3

is replaced with v). A Bäcklund transformation between two equations which are depicted by the
top and bottom faces in the cube is given by

Q(u0,u1,v0,v1;α,γ) = 0,

Q(u0,u2,v0,v2;β ,γ) = 0.

We note that this is an auto-Bäcklund transformation as the top and bottom equations are the same.
In this section, we use the Bäcklund transformation of the lattice mKdV to derive the Bäcklund

transformation for the qPII and qPIII hierarchies. Moreover, we give a few examples of some rational
solutions for second and fourth order.

4.1. Bäcklund transformation of the qqqPII hierarchy

To find a Bäcklund transformation for the qPII hierarchy, we embed the (n,1) periodic reduction in
three dimensions with a slight modification. A third direction in the Z×Z×Z lattice is associated
with parameters γ1,γ2 and variables vi’s. Instead of imposing the (n,1) periodic reduction for the
v’s variables, we use a twist reduction vl+n,m+1 = vl,m/d cf. [8]. This is because we want to create
a Bäcklund transformation between two equations with different parameters. Parameters along the
staircase of the v variables are as the same as the ones we use for the u variables. For example the
(2,1)- reduction in three dimension corresponding to the first member in the qPII hierarchy can be
described in Figure 4.1.

We now illustrate a method of finding a Bäcklund transformation for the qPII hierarchy by using
the base case qPII which is associated with n = 2.
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γi

α0,i α1,i qα0,i

βi

u0 u1 u2 u3

u0 u1

v0 v1 v2 v3

v0/d v1/d

Fig. 4.1 Bäcklund transformation for qPII.

The twisted reduction for variables v’s gives the top shaded equation which is given by

Q(v2,v3,v0/d,v1/d;qα0,1,qα0,2,β1,β2) = qα0,1v2v0/d−qα0,2v3v1/d−β1v2v3 +β2v0v1/d2 = 0.
(4.2)

This gives us a shift map

Sv : (v0,v1,v2,α0,i,α1,i,βi) 7−→ (v1,v2,v3,α1,i,qα0,i,βi), with i = 1,2, (4.3)

where v3 can be solved from (4.2).
As we discussed above, a Bäcklund transformation can be inherited from CAC. Thus, a

Bäcklund transformation between the shaded equations in Figure (4.1) is the following system

Q(u0,u1,v0,v1;α0,1,α0,2,γ1,γ2) = 0,

Q(u1,u2,v1,v2;α1,1,α1,2,γ1,γ2) = 0, (4.4)

Q(u2,u0,v2,v0/d;β1,β2,γ1,γ2) = 0.

We consider this system as the system of variables v0,v1,v2. By writing v2 and v1 in terms of v0,
we obtain a quadratic equation in v0 which leads to non-rational solutions in general. However, if
we take γ2 = 0 then system (4.4) becomes a linear system and it can be solved uniquely with the
following solution

v0 =
γ1d (α0,2α1,2u0u2 +α0,2β1u1u2 +α1,1β1u0u1)

(dα0,1α1,1β1−α0,2α1,2β2)u0
,

v1 =
γ1 (dα0,1α1,2u0u2 +dα0,1β1u1u2 +α1,2β2u0u1)

(dα0,1α1,1β1−α0,2α1,2β2)u1
,

v2 =
γ1 (dα0,1α1,1u0u2 +α0,2β2u1u2 +α1,1β2u0u1)

u2 (dα0,1α1,1β1−α0,2α1,2β2)
.

This defines the Bäcklund transformation BT : (u0,u1,u2) 7−→ (v0,v1,v2). We note that the Bäcklund
transformation should be compatible with the shift map Sv and S, i.e. we have

Sv ◦BT = BT ◦S.

This implies d = q. Similar to the qPII equation, we introduce gi =
vi+1
vi

for i = 0,1. Using the
parameters given in (3.8), we obtain the equation

g̃1
˜
g1 =

λ 2(b0 q g1 +1)
q g1(b0 +q g1)

, where b0 = t. (4.5)
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This suggests that we introduce Hi = qgi for i = 0, 1, 2, in which case equation (4.5) can be written
as

H̃1H˜ 1 =
q2λ 2(tH1 +1)

H1(t +H1)
.

Therefore, H1 satisfies qPII, with parameter λ 2q2 instead of λ 2. Hence, the transformation from hi

to Hi, where hi = ui+1/ui, and i = 0,1,2, defines the Bäcklund transformation for qPII. Thus, we
can write the Bäcklund transformation of qP(2)

II as

H1 = qg1 = q
v2

v1
=

q1/2(q1/2 tλ 2 h1 +q1/2 λ 2 +h1
˜
h1)

h1
(
q1/2 h1

˜
h1 + t h1 +1

) , by taking b1 = q
1
2 t, (4.6)

where H1 = H(t),h1 = h1(t) and h̃1 = h1(q1/2t). This is equivalent to the known Bäcklund trans-
formation for qPII [27].

We can see that this transformation produces a solution, H of qPII with parameter λ 2q2 from a
solution, h corresponding to λ 2.

Proposition 4.1. The simplest rational solution (seed solution) of the qPII and qPIII hierarchies,
equations (1.8) and (1.11), respectively is

hl =±1, l = 0,1, ...,n, and λ =±1. (4.7)

This can be checked by substituting the above values into (1.8) and (1.11), respectively. Apply-
ing the Bäcklund transformation (equation (4.6)) repeatedly on the seed solution will give us an
infinite number of solutions of equation (2.1) for λ 2 7−→ q2λ 2. In the next few examples we will
use the notation h(t;λ 2) to refer to a solution of equation corresponding to λ 2.

Example 4.1. Let us look at few examples of rational solutions of qP(2)
II . Starting with λ 2 = 1, we

have

h1(t;1) = 1,

h1(t; p4) = p
P0(pt)
P0(t)

,

h1(t; p8) =
p4P0(t)P1(t)
P0(pt)P2(t)

,

h1(t; p12) =
p5P0(pt)P2(t)

(
P0(p2t)P2(t)P2(pt)+ p5tP0(pt)P1(pt)P2(t)+ p9P0(t)P1(t)P1(pt)

)
P0(t)P1(t)

(
p9P0(p2t)P2(t)P2(pt)+ p4tP0(pt)P1(pt)P2(t)+ p8P0(t)P1(t)P1(pt)

) ,

where p2 = q and

P0(t) = 1+ p+ t,

P1(t) = 1+ p3 P0(p2t)
P0(t)

+ p2t
P0(p2t)
P0(pt)

,

P2(t) = p5 + p2 P0(p2t)
P0(t)

+ pt
P0(p2t)
P0(pt)

.

We note that we can start with another seed solution h1 = −1 so, we have another infinite
solution for qP(2)

II which was already generated in [44].
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Following the same method above, a Bäcklund transformation for the nth member of the qPII

hierarchy (Figure 3.2) is given by the system below

Q(u0,u1,v0,v1,α0,1,α0,2,γ1,γ2) = 0,
...

Q(un−1,un,vn−1,vn,αn−1,1,αn−1,2,γ1,γ2) = 0,

Q(un,u0,vn,v0/d,β1,β2,γ1,γ2) = 0.

Taking γ2 = 0, we obtain a linear system of v0,v1, . . . ,vn. We also want that this Bäcklund transfor-
mation is compatible with the shift map; thus d = q.

Let gi = vi+1/vi, and let the parameters be as given in (3.8). Then, we obtain a Bäcklund trans-
formation of equation (1.8), which is

gihi = N/D, (4.8)

where

N =
1

qλ 2n−2−1

n−1

∑
j=0

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i−1 +

n−1

∑
j=i+1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i−1 +

λ 2i+1
∏

n−1
s=0 hs

qλ 2n−2−1
,

D =
1

qλ 2n−2−1

n−1

∑
j=0

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i+1 +

n−1

∑
j=i

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i+1 +

λ 2i−1
∏

n−1
s=0 hs

qλ 2n−2−1
,

and the following equation

gn =
λ 2 (qb0g1g2 . . .gn−1 +1)

qg0g1 . . .gn−1 (qg1g2 . . .gn−1 +b0)
. (4.9)

To obtain the form of qP(n)
II , we take Hi = q

1
n−1 gi to cancel out each q present in the above equation.

Thus, we obtain a Bäcklund transformation hi 7→ Hi of (1.8) where λ 2 7→ q
2

n−1 λ 2.

Proposition 4.2. Let hi be a solution of qP(n)
II (equation (1.8)) with parameter λ 2. Then

Hi = q
1

n−1 gi, where gi is given by equation (4.8), (i = 0,1,2, . . . ,n)

is also a solution of qP(n)
II , with parameter q

2
n−1 λ 2.

Corollary 4.1. The Bäcklund transformation of qP(4)
II takes hi 7−→Hi = q1/3gi, where i= 0,1,2,3,4,

λ 2 7−→ λ 2q2/3 and

H2 =
q1/12

(
q1/2 λ 4 +q1/4 λ 2

˜̃
h2 ˜

h2 +h2 ˜
h2

2
˜̃
h2 +q1/2 λ 4 t

˜
h2 h2 h̃2 +q3/4 λ 4

˜̃
h2 ˜

h2
2 h2

2 h̃2

)
h2

(
q1/4 λ 2 +

˜̃
h2 ˜

h2 +q3/4 λ 4

˜̃
h2 ˜

h2
2 h2 +q1/4 λ 2 t

˜
h2 h2 h̃2 +q1/2 λ 2

˜̃
h2 ˜

h2
2 h2

2 h̃2

) ,

(4.10)
where H2 = H2(t),h2 = h2(t) and h̃2 = h2

(
q1/4t

)
.
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Example 4.2. We generate the first three rational solutions of the qP(4)
II . Starting with λ 2 = 1, we

have

h2(t;1) = 1,

h2(t; p
8
3 ) =

p1/3P(p2t)
P(pt)

,

h2(t; p
16
3 ) =

p2/3P(pt)
(

p3Q(t)+Q(pt)+ p9Q(p2t)+ p5tP(p4t)P(t)+ p6Q(p3t)
)

P(p2t)
(

Q(t)+ p9Q(pt)+ p6Q(p2t)+ p2tP(p4t)P(t)+ p3Q(p3t)
) ,

where p4 = q and

P(t) = 1+ p+ p2 + p3 + t,

Q(t) = P(t)P(pt).

4.2. Bäcklund transformation of the qqqPIII hierarchy

We have the qPIII hierarchy given by equation (1.11). We can apply the method given in Subsec-
tion 4.1 to the qPIII hierarchy because Figure 3.3 is the same as Figure 3.2 with the square on the
right extended one step. Hence, we can deduce the Bäcklund transformation of the qPIII hierarchy.

Proposition 4.3. Let hi be a solution of qP(n)
III (equation (1.11)) with parameter λ 2. Then

Hi = q
1

n−1 gi, (i = 0,1,2, ...,n),

is also a solution of qP(n)
III , with parameter q

2
n−1 λ 2 where

gi =


1
h0

N0
D0
, i = 0,

1
hl

N1
D1
, i = 1, . . . ,n−1,

1
hn

N2
D2
, i = n,

(4.11)

and

N0 =
q

(qλ 2n−2−1)

(
n−1

∑
j=1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2n+1 +

h0 ∏
n
s=0 hs

qλ
+

hn ∏
n−1
s=0 h2

s

qb0λ

)
,

D0 =
q

(qλ 2n−2−1)

(
n−1

∑
j=1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2n+3 +

h0 ∏
n
s=0 hs

qλ 3 +
hn ∏

n−1
s=0 h2

s

qb0λ 3

)
+

h0

b0λ
,

N1 =
1

qλ 2n−2−1

n−1

∑
j=1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i−1 +

n−1

∑
j=i+1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i−1 +

hn ∏
n−1
s=0 h2

s

b0λ 1−2i +
h0 ∏

n
s=0 hs

λ 1−2i ,

D1 =
1

qλ 2n−2−1

n−1

∑
j=1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i+1 +

n−1

∑
j=i

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2i+1 +

hn ∏
n−1
s=0 h2

s

b0λ 3−2i +
h0 ∏

n
s=0 hs

λ 3−2i ,
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N2 =
1

(qλ 2n−2−1)

(
n−1

∑
j=1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2n−1 +λ

2n−1h0

n

∏
s=0

hs +
λhn ∏

n−1
s=0 h2

s

qb0

)
,

D2 =
1

qλ 2n−2−1

n−1

∑
j=1

h j ∏
j−1
s=0 h2

s

b jλ
2 j−2n+1 +

hn ∏
n−1
s=0 h2

s

b0λ 3−2n +
h0 ∏

n
s=0 hs

λ 3−2n .

This proposition provides us with the following Bäcklund transformation for qP(n)
III

hi 7→ Hi, and λ
2 7→ q

2
n−1 λ

2. (4.12)

Corollary 4.2. The Bäcklund transformation of qP(2)
III is given by

H0 =
λ 2 p(b t h1 +b+q h0 h1)

h0 (b t h1 +λ 2 b q+q h0 h1)
,

H1 =
q
(
λ 2 b t h1 +λ 2 b+h0 h1

)
h1 (b t h1 +b+q h0 h1)

,

(4.13)

where H0 = H0(t),H1 = H1(t),h0 = h0(t) and h1 = h1(t). This system of two equations provide us
a solution of qPIII with λ 2 7−→ q2λ 2.

Example 4.3. We consider solutions of qP(2)
III which are given when λ 2 7−→ q2λ 2. Starting with

λ 2 = 1, we have

h0(t;1) = 1 and h1(t;1) = 1,

h0(t;q2) =
qR0(t)
R1(t)

and h1(t;q2) =
q(1+b+bt)

R0(t)
,

h0(t;q4) =
q2R1(t)(bt +R2(t)+qR3(t))
R0(t)(bq3t +R2(t)+qR3(t))

and h1(t;q4) =
R0(t)(bq2t +q2R2(t)+R3(t))

(1+b+bt)(bt +R2(t)+qR3(t))
,

where

R0(t) = bt +b+q and R1(t) = bq+bt +q,

R2(t) =
bqt2(1+b+bt)

R0(t)
and R3(t) =

q2t(1+b+bt)
R1(t)

.

In the next Corollary we give the explicit form of Bäcklund transformation for the fourth-order
of the qPIII equation.

Corollary 4.3. The Bäcklund transformation of qP(4)
III is given by

H2 =
λ 4bq1/2th2h3

ˆ
h3 +λ 4bq1/2 +λ 4qh2

2h3
ˆ
h2

ˆ
h2

3 +λ 2q1/2

ˆ
h2

ˆ
h3 +bh2

ˆ
h2

ˆ
h2

3

q1/6h2
(
λ 4bq1/2h2

ˆ
h2

ˆ
h2

3 +λ 2bth2h3
ˆ
h3 +λ 2b+λ 2q1/2h2

2h3
ˆ
h2

ˆ
h2

3 + ˆ
h2

ˆ
h3
) ,

H3 =
q1/3

(
λ 6bq1/2th2h3

ˆ
h3 +λ 6bq1/2 +λ 4q1/2

ˆ
h2

ˆ
h3 +λ 2bh2

ˆ
h2

ˆ
h2

3 +h2
2h3

ˆ
h2

ˆ
h2

3
)

h3
(
λ 4bq1/2th2h3

ˆ
h3 +λ 4bq1/2 +λ 4qh2

2h3
ˆ
h2

ˆ
h2

3 +λ 2q1/2
ˆ
h2

ˆ
h3 +bh2

ˆ
h2

ˆ
h2

3

) ,
where H2 = H2(t),H3 = H3(t),h2 = h2(t),h3 = h3(t) and

ˆ
h2 = h2(t/p),

ˆ
h3 = h3(t/p) with p2 = q.

This system of two equations give us solutions H2 and H3 from solutions h2 and h3 corresponding
to λ 2 7−→ p4/3λ 2.
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Example 4.4. Let us give a few solutions of qP(4)
III . For l = 0,1,2, we have λ 2 = 1, p4/3, p8/3, and

h2(t;1) = h3(t;1) = 1,

h2(t; p
4
3 ) =

F0(pt)

p
1
3 F1(t)

and h3(t; p
4
3 ) =

p
2
3 F1(pt)
F0(pt)

,

h2(t; p
8
3 ) =

p
1
3 F1(t)

(
p2Q0(t)+bp4tF1(pt)F1(t/p)+Q1(t)

)
F0(pt)

(
Q0(t)+bp2tF1(pt)F1(t/p)+ p3Q0(pt)

) , and

h3(t; p
8
3 ) =

p
1
3 F0(pt)

(
p3Q0(t)+bp5tF1(pt)F1(t/p)+Q0(pt)

)
F1(pt)

(
p2Q0(t)+bp4tF1(pt)F1(t/p)+Q1(t)

) ,

where

F0(t) = bp+bt +b+ p2 + p,

F1(t) = 1+b+ p+bp+bt,

Q0(t) = F0(t)(bpF1(t/p)+F1(t)),

Q1(t) = F0(pt)(bF1(t)+ p5F1(pt)).

5. Exact solution of the Lax pairs for qqq-discrete second and third Painlevé equations

Because the general solutions of discrete Painlevé equations are new transcendental functions, the
corresponding solutions of their associated linear problems are highly nontrivial. In this section,
we consider special q-rational solutions of the qPII and qPIII equations that exist for special values
of parameters and deduce the solutions of their respective linear problems. The results we obtain
are similar to those in [20, 31], where rational solutions of qPII and qPIII and their associated linear
problem were studied. In the latter paper, the monodromy matrix A was shown to be a product of
diagonal matrices and we show that this is also true for the qPII hierarchy as well as the hierarchies
of qPIII. The main results of this section are stated in Propositions 5.1 and 5.2.

We use the notation Γq(1− z) to denote the product

Γq(1− z) =
1

(z;q)∞

=
∞

∏
k=0

1
(1−qkz)

, (5.1)

to be consistent with the terminology used in [31]. Note that this convention differs from the defini-
tion of Γq(z) in [11, Chapter 5].

The qPII hierarchy equation (1.8) is solved by (4.7), and this allows its linear system to be
diagonalized by a constant matrix. Hence, we can solve it in terms of q-Gamma functions.

Proposition 5.1. Suppose hi are solutions of the qPII hierarchy given by Proposition 4.1. When
B and T are as given in (1.6) and (1.7), respectively, there exists a solution Φ(x, t) of Lax pair
(1.1a,1.1b) given by

Φ(x, t) =
(

i −i
1 1

)
c0(−i)µ(n+1)+µ̄

n

∏
j=0

Γq(1−b jx)

c1iµ(n+1)+µ̄

n

∏
j=0

Γq(1+b jx)

 ,
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where µ = lnx
lnq , µ̄ = n ln t

lnq , b0 = t, bl = q
l
n t (l = 1, ...,n−1), bn = q and c0 and c1 are constants.

Proof. Substituting the special solution (4.7) (take λ = −1) into the Lax pair (1.1a) and (1.1b),
where A is given in (1.3), and B is given in (1.6) gives

Φ(qx, t) = A Φ(x, t), (5.2)

T (Φ(x, t)) = B Φ(x, t), (5.3)

where

A =
n

∏
j=0

(
ibn− jx 1
−1 ibn− jx

)
, B =

(
ib0x 1
−1 ib0x

)
.

We denote the solution matrix of (5.2) and (5.3) as Φ(x, t) =
(

φ1

φ2

)
.

We now diagonalise both A and B with constant matrix P =

(
i −i
1 1

)
. By taking Φ(x, t) =

PΨ(x, t) we obtain

Ψ(qx, t) = P−1AP Ψ(x, t). (5.4)

where

P−1AP =

(−i)n+1
n

∏
l=0

(1−blx) 0

0 in+1
n

∏
l=0

(1+blx)

 .

Let
(

u(x, t)
v(x, t)

)
be the matrix solution of equation (5.4), i.e

(
φ1

φ2

)
= P

(
C0(t)u(x, t)
C1(t)v(x, t)

)
where C0(t)

and C1(t) are constants, and

u(qx, t) = (−i)n+1
n

∏
l=0

(1−blx)u(x, t), (5.5a)

v(qx, t) = in+1
n

∏
l=0

(1+blx)v(x, t). (5.5b)

Equation (5.5a) is solved by writing

u(x, t) = (−i)µ(n+1)
n

∏
l=0

ul(x, t) (5.6)

where µ = n lnx
lnq and

ul(qx, t) = (1−blx)ul(x, t), for l = 0,1, . . . ,n. (5.7)

These equations (5.7) can be solved in terms of q-Gamma function; therefore we get

u(x, t) = (−i)µ(n+1)
n

∏
l=0

Γq(1−blx). (5.8)
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Similarly, equation (5.5b) has a solution

v(x, t) = (i)µ(n+1)
n

∏
l=0

Γq(1+blx). (5.9)

Therefore

(
φ1

φ2

)
= P


C0(t)(−i)µ(n+1)

n

∏
j=0

Γq(1−b jx)

C1(t)iµ(n+1)
n

∏
j=0

Γq(1+b jx)

 .

To find C0(t) and C1(t), we use the deformation problem

T (Ψ(x, t)) = P−1BP Ψ(x, t), (5.10)

where

P−1BP =

(
−i(1−b0x) 0

0 i(1+b0x)

)
.

This implies

T̃ (u(x, t)) =−i(1−b0x)u(x, t),

T̃ (v(x, t)) = i(1+b0x)v(x, t).

Using (5.8) and (5.9), we obtain C0(t)= c0(−i)
n ln t
lnq and C1(t)= c1i

n ln t
lnq , where c0 and c1 are constants.

Therefore, we get

(
φ1

φ2

)
= P


c0(−i)µ(n+1)+µ̄

n

∏
j=0

Γq(1−b jx)

c1iµ(n+1)+µ̄

n

∏
j=0

Γq(1+b jx)

 ,

where µ = lnx
lnq and µ̄ = n ln t

lnq . �

Remark 5.1. The simplest solution of the qPII hierarchy given by Proposition 4.1 also happens to
be a solution of the qPIII hierarchy under the condition b = 1. Since the qPII and qPIII hierarchies
share the same spectral linear problem, it follows that the solution of the linear problem given in
Proposition 5.1 is also a solution of the corresponding linear problem for the qPIII hierarchy. The
difference is only on the values of parameters bi (i = 0,1, ...,n), in the case of qPIII the values take:
b0 = b1 = t, bl = bl+1 = q

l
n t (l = 2,4,6, ...,n−2), and bn = q.
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Proposition 5.2. When B and T were given in (1.9) and (1.10), respectively, and the qPIII hierarchy
equation (1.11) is solved by (4.7), there exists a solution Φ(x, t) of Lax pair (1.1a, 1.1b) given by

Φ(x, t) =
(

i −i
1 1

)


c0 (−1)µ̄(−i)µ(n+1)Γq(1−bnx)
n−1

∏
j=0
even

(Γq(1−b jx))2

c1(−1)µ̄ iµ(n+1)Γq(1+bnx)
n−1

∏
j=0
even

(Γq(1+b jx))2

 ,

where µ = lnx
lnq , µ̄ = n ln t

2lnq and c0 and c1 are constants.

6. Conclusion

In this paper, we have presented two hierarchies of Painlevé equations, one of them is a qPII hierar-
chy which is found in [21] and another is a qPIII hierarchy which is new. Each of these hierarchies
was obtained by reduction of the multi-parametric lattice mKdV equation, by using the staircase
method. The explicit forms of these hierarchies are given in equations (1.8) and (1.11), with second
members of each hierarchy provided by equations (2.8) and (2.10).

In addition to explicit construction of these hierarchies, we provided some properties which are
deduced for the first time. One of these is a method to construct Bäcklund transformations for every
member of the qPII and qPIII hierarchies. We found so-called seed solutions for each member of
these hierarchies. We then used these transformations on seed solutions to find rational solutions of
second-order and fourth-order members of the qPII and qPIII hierarchies. From the seed solution for
the hierarchies, we also deduced the corresponding solutions of their Lax pair; see Propositions 5.1
and 5.2.

It is noteworthy that the spectral problem in each Lax pair in each hierarchy involves a 2×
2 coefficient matrix, A from equation (1.1a), which satisfies the conditions of non-resonance in
Birkhoff’s theory of linear q-difference equations. To our knowledge, this is the first time such
linear problems have been constructed for q-Painlevé hierarchies.

There still remain open questions. In the PDE setting, members of a hierarchy are related by
recursion operators. However, such operators are not known in the difference equation setting. We
have also not touched upon continuum limits, although there is reason to believe that the hierarchies
we have provided have well known Painlevé hierarchies as continuum limits.

Finally, we note that the construction methods in this paper also lead to other hierarchies. These
will be the subject of future publications.

A. Derivation of the Lax pair (3.2)

Here we provide how we derive the Lax pair (3.2). Using the CAC property, we obtain a Lax pair
of equation (3.1)

L1(w0,w1,α1,α2) =

(
−α1w0

w1
k1w0

k2
w1

−α2

)
and M1(w0,w2,β1,β2) =

(
−β1w0

w2
k1w0

k2
w2

−β2

)
, (A.1)

where k1 and k2 are spectral parameters. Using the gauge matrix

G (z) =
(

1 0
0 1

z

)
,
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we have a new-looking matrix

L(w0,w1,α1,α2) = G −1(w1)L1(w0,w1,α1,α2)G (w0) =

(
−α1w0

w1
k1

k2 −α2w1
w0

)
, (A.2)

M(w0,w2,β1,β2) = G −1(w2)M1(w0,w2,β1,β2)G (w0) =

(
−β1w0

w2
k1

k2 −β2w2
w0

)
. (A.3)

Now we replace k1 and k2 in (A.2) and (A.3) with l1
x and l2

x , respectively. For simplicity, we multiply
by x, which leads to the desired results in equations 3.2.
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Physics A: Mathematical and General, 32 (4) (1999), 655.

[11] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.20 of 2018-09-15,
2018. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R.
Miller and B.V. Saunders, eds.

[12] C.M. Field, N. Joshi, and F.W. Nijhoff, q-difference equations of KdV type and Chazy-type second-
degree difference equations, Journal of Physics A: Mathematical and Theoretical, 41 (33) (2008),
332005.
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