Muscle Tissue

Descriptive Histology 272
20 Oct 2019

Objectives

By the end of this lecture you will be able to:

- Understand the different type of muscles in human body.
- Learn the differences on shape, structures, and function of human muscles.
- Learn the histology of muscle tissue.

Muscle Tissue

- Muscle tissue is composed of differentiated cells containing contractile proteins.
- Microfilaments and associated proteins together generate the contraction.
- Originates from Mesenchyme
- Provided with well developed vascular supply and nerve network.

Muscle Types

Skeletal Muscle

 is composed of large, elongated, multinucleated fibers that show strong, quick, voluntary contractions

Cardiac Muscle is composed of

 irregular branched cells bound together longitudinally by intercalated disks and shows strong, involuntary contractions

Smooth Muscle is composed of grouped, fusiform cells with weak, involuntary contractions.
 The density of intercellular packing seen reflects the small amount of extracellular connective tissue present

Fusiform means having a spindle-like shape that is wide in the middle and tapers at both ends.

Definitions

- The cytoplasm of muscle cells is called sarcoplasm (Gr. sarkos, flesh, + plasma, thing formed)
- The smooth ER is called sarcoplasmic reticulum.
- The sarcolemma (sarkos + Gr. lemma, husk) is the cell membrane, or plasmalemma.

Skeletal Muscle Development

- Skeletal Muscle - forms "flesh" or "meat" of body
- 40% of total body weight.
- Cells form long fibers up to 100 mm (4 inch)
- Cells are unique - formed from a syncytium (multinucleate), many cells fused together for more efficient function;
- Multinucleate, 3-5 nuclei/mm length; nuclei always at periphery of cell.
- very well organized; ensheathed by Proper CT (endomysium; perimysium; epimysium).

Myoblasts

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://wwwaccessmedicine.com Copyright 9 The McGraw-Hill Companies, Inc. All rights reserved.

Skeletal Muscle Development con.

- Skeletal muscle begins to differentiate when mesenchymal cells called myoblasts align and fuse together to make longer, multinucleated tubes called myotubes.
- Myotubes synthesize the proteins to make up myofilaments and gradually begin to show cross striations by light microscopy.
- Myotubes continue differentiating to form functional myofilaments and the nuclei are displaced against the sarcolemma.

Skeletal Muscle Development con.

- Part of the myoblast population does not fuse and differentiate, but remains as a group of mesenchymal cells called muscle satellite cells located on the external surface of muscle fibers inside the developing external lamina.
- Satellite cells proliferate and produce new muscle fibers following muscle injury.

Source: Mescher AL: Junqueira's Basic Histology, 13th Edition: www.accessmedicine.com
Copyright (c) The McGraw-Hill Companies, Inc. All rights reserved.
http://www.youtube.com/watch?v=f tZne9ON7c

Organization of skeletal muscle.

- An entire skeletal muscle is enclosed within a dense connective tissue layer called the epimysium continuous with the tendon binding it to bone (a).
- Each fascicle (bundle) of muscle fibers is wrapped in another connective tissue layer called the perimysium (b).
- Individual muscle fibers (elongated multinuclear cells) is surrounded by a very delicate layer called the endomysium, which includes an external lamina produced by the muscle fiber (and enclosing the satellite cells) and ECM produced by fibroblasts (c).

Source: Mescher AL: Junqueira's Basic Histology, 13th Edition: www.accessmedicine.com
Copyright © The McGraw-Hill Compantes, Inc. All rights reserved.

Skeletal Muscle

- Cells organized into contractile units $=$ Sarcomeres.
- Sarcomeres are connected end to end with Myofibril. Many myofibrils then make up a cell.
- Sarcomere - the basic functional contractile unit;
- Organization of myofilaments, thin (actin) and thick (myosin)
- $E R=$ Sarcoplasmic Reticulum : is a specialized type of smooth $E R$ that regulates the calcium ion concentration in the cytoplasm of striated muscle cells.
- Triads (t-tubule + 2 cisternae) at A-l junction

a Thick filament

b Thin filament

Cardiac Muscle

- Mature cardiac muscle cells are approximately $15 \mu \mathrm{~m}$ in diameter and from 85 to $100 \mu \mathrm{~m}$ in length
- They exhibit a cross-striated banding pattern comparable to that of skeletal muscle
- Centrally located (I or 2) nuclei per cell
- Cell membranes interdigitate with each other $=$ intercalated discs
- Surrounding the muscle cells is a delicate sheath of endomysium with a rich capillary network.
- Rich with mitochondria (up to 40\% of volume)

Openings of transverse tubules Intercalated disc

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fibrils of reticular
fibers

Smooth Muscle

> Forms broad, thin sheets of muscle in layers around organs; e.g. Gl tract.
$>$ Individual spindle (fusiform) shaped cells are small (20-500 $\mu \mathrm{m}$) loosely packed, have one cigar shaped nucleus in the center of the cell;
> Actin and myosin myofilaments are unorganized; there are no striations or sarcomeres.
> Capable of hyperplasia (e.g. uterus in pregnancy)
> The tissue is poorly innervated

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Table I0-I Important Comparisons of the Three Types of Muscle.

	Skeletal Muscle	Cardiac Muscle	Smooth Muscle
Fibers	Single multinucleated cells	Aligned cells in branching arrangement	Single small, closely packed fusiform cells
Cell/fiber shape and size	Cylindrical, $10-\mathrm{I} 00 \mu \mathrm{~m}$ diameter, many cm long	Cylindrical, $10-20 \mu \mathrm{~m}$ diameter, $50-100$ $\mu \mathrm{m}$ long	Fusiform, diameter $0.2-10 \mu \mathrm{~m}$, length $50-$ $200 \mu \mathrm{~m}$
Striations	Present	Present	Absent
Location of nuclei	Peripheral, adjacent to sarcolemma	Central	Central, at widest part of cell
T tubules	Center of triads at A-I junctions	In diads at \mathbf{Z} discs	Absent; caveolae may be functionally similar
Sarcoplasmic reticulum (SR)	Well-developed, with two terminal cisterns per sarcomere in triads with T tubule	Less well-developed, one small terminal cistern per sarcomere in diad with T tubule	Irregular smooth ER without distinctive organization
Special structural features	Very well-organized sarcomeres, SR, and transverse tubule system	Intercalated discs joining cell, with many adherent and gap junctions	Gap junctions, caveolae, dense bodies
Control of contraction	Troponin C binds Ca^{2+}, moving tropomyosin and exposing actin for myosin binding	Similar to that of skeletal muscle	Actin-myosin binding occurs with myosin phosphorylation by MLCK triggered when calmodulin binds Ca^{2+}
Connective tissue organization	Endomysium, perimysium, and epimysium	Endomysium; subendocardial and subpericardial CT layers	Endomysium and less-organized CT sheaths
Major locations	Skeletal muscles, tongue, diaphragm, eyes, and upper esophagus	Heart	Blood vessels, digestive and respiratory tracts, uterus, bladder, and other organs
Key function	Voluntary movements	Automatic (involuntary) pumping of blood	Involuntary movements
Efferent innervation	Motor	Autonomic	Autonomic
Contractions	All-or-none, triggered at motor end plates	All-or-none, intrinsic (beginning at nodes of conducting fibers)	Partial, slow, often spontaneous, wavelike and rhythmic
Cell response to increased load	Hypertrophy (increase in fiber size)	Hypertrophy	Hypertrophy and hyperplasia (increase in cell/fiber number)
Capacity for regeneration	Limited, involving satellite cells mainly	Very poor	Good, involving mitotic activity of muscle cells

https://www.youtube.com/watch?v=0 ihc26yxN4
https://www.youtube.com/watch?v=jdYRtQWnpr0

