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a b s t r a c t

We investigate a multicommodity network design problem where a discrete set of technol-
ogies with step-increasing cost and capacity functions should be installed on the edges.
This problem is a fundamental network design problem having many important applica-
tions in contemporary telecommunication networks. We describe an exact constraint gen-
eration approach and we show that the conjunctive use of valid inequalities, bipartition
inequalities that are generated using max-flow computations, as well as an exact separa-
tion algorithm of metric inequalities makes it feasible to solve to optimality instances with
up to 50 nodes and 100 edges.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

We address the Discrete Cost Multicommodity Network Design problem (DCMND) which is defined as follows. We are given
a connected undirected graph G ¼ ðV ; EÞ, with jV j ¼ n and jEj ¼ m, a set of L potential facilities to be installed on each edge,
and a set of multicommodity flow requirements corresponding to K � nðn� 1Þ=2 distinct point-to-point commodity demand
flows. Associated with each commodity k ðk ¼ 1; . . . ;KÞ is a requested flow value dk that must be routed between a specified
source sk and a specified sink tk: Each facility l ðl ¼ 1; . . . ; LÞ is characterized by a variable cost jl (per unit of length) and a
capacity ul which represents an upper bound on total flow that may pass through it. The installation of facility l on edge e 2 E
incurs a fixed cost f l

e � hejl where he is the length of edge e. The problem is to design a minimum-cost network by installing
at most one facility on each edge in such a way that the installed capacities permit the prescribed K point-to-point commod-
ity demand flows to be routed simultaneously between their respective endpoints.

The DCMND is a fundamental network design problem having many important applications in telecommunication net-
works where we have available a discrete set of technologies with discrete step-increasing cost and capacity functions. It is
noteworthy that a seemingly different multicommodity network design problem with discrete node costs has recently at-
tracted the attention of researchers [4]. Actually, this latter problem can be restated as a DCMND by splitting nodes in
two and considering them as edges of the network. For an excellent survey of network design problems, the reader in re-
ferred to Minoux [12]. Interestingly, although this latter paper has been published about two decades ago, it still constitutes
a valuable reference paper on network design problems. In particular, the author describes a simpler version of the DCMND
and referred to as the Optimum Rented Lines Network Problem. However, during the last decade, the DCMND, in the foregoing
general form, has been addressed by several authors. Stoer and Dahl [16] address a slightly more general version with sur-
vivability constraints. They derive valid inequalities from the knapsack substructure of the problem and describe a branch-
and-cut approach to obtain lower bounds. Approximate solutions are obtained by forcing fractional variables to integral
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values. Gabrel et al. [7] present an integer programming formulation of the DCMND and describe an exact constraint gen-
eration algorithm for solving it. They report the solution of instances with up to 20 nodes and 37 links. Minoux [13] presents
a general survey of the DCMND and some closely related problems. These latter include the so-called single-facility and two-
facility network loading problems. While the former problem refers to the case where the available facility capacities on any
edge are multiples of a given basic facility [5], the latter problem refers to the case where capacity expansion can be achieved
by means of two types of facilities [6]. In Agarwal [2], a local search heuristic is described. A neighboring solution is obtained
by solving a multiple choice knapsack problem using dynamic programming. The author reports that the heuristic produces
solutions of instances of up to 20 nodes and 3 facilities within about 5% of lower bound on the average. Finally, Gabrel et al.
[8] describe several heuristic approaches for DCMND. These approaches include greedy heuristics as well as a heuristic
implementation of the exact algorithm which is presented in Gabrel et al. [7]. This latter approach has been found to perform
well on graphs having up to 50 nodes and 90 edges.

In this paper, we are concerned with the exact solution of the DCMND. We describe a constraint (or, row) generation algo-
rithm that can be cast in the same general framework as the approach proposed by Gabrel et al. [7] but exhibits several dis-
tinctive features with this latter algorithm. Our algorithm has produced proven optimal solutions for a number of randomly
generated instances with up to 50 nodes and 100 edges.

The remainder of this paper is organized as follows. In Section 2, we present a valid mathematical programming formu-
lation. In Section 3, we present a detailed description of our algorithm. In Section 4, we report the results of our computa-
tional experiments. Finally, some concluding remarks are provided in the last section.

Throughout the paper, we assume w.l.o.g. that u1 < u2 < . . . < uL and f 1
e < f 2

e < . . . < f L
e 8e 2 E. Moreover, we shall conform

with the following notation. For a node subset W � V ; we define �W ¼ V nW and the cutset dðWÞ ¼ fe ¼ fi; jg 2 E : i 2W and
j 2 �Wg: Also, we define vðWÞ ¼ fj 2 �W : e ¼ fi; jg 2 dðWÞg.

2. A 0-1 programming formulation of the DCMND

The decision variables are the following

yl
e :

1; if facility l is installed on edge e; l ¼ 1; . . . ; L; e 2 E
0;otherwise

�

ze : capacity assigned to edge e; e 2 E.

Moreover, we denote for each k 2 Rm
þ by l�kðkÞ (k ¼ 1; . . . ;KÞ the value of the shortest path between sk and tk in G with

respect to the distance matrix ðkeÞe2E.
This yields the following model

DCMND : Minimize
X
e2E

XL

l¼1

f l
eyl

e ð1Þ

subject to:XL

l¼1

yl
e 6 1; 8e 2 E; ð2Þ

XL

l¼1

ulyl
e � ze ¼ 0; 8e 2 E; ð3Þ

X
e2E

keze P
XK

k¼1

dkl�kðkÞ; 8k 2 Rm
þ ; ð4Þ

yl
e 2 f0;1g; 8e 2 E; l ¼ 1; . . . ; L: ð5Þ

The objective (1) is to minimize the total installation cost. Constraints (2) require that at most one facility should be installed
on each edge e 2 E. Constraints (3) enforce the ze (e 2 EÞ variables to coincide with the installed capacity on edge e. Constraints
(4) require that the capacity vector z is feasible (i.e. it enables the K flows to be routed simultaneously). These constraints,
which are often referred to as metric inequalities, are necessary because if a linear design cost ke is associated with each edge
e 2 E, then a lower bound on the cost for routing flow k ðk ¼ 1; . . . ;KÞ is equal to the shortest path length between source sk and
sink tk multiplied with the flow value dk. Hence, a valid lower bound on the total cost for routing the K flows simultaneously isPK

k¼1dkl�kðkÞ. Obviously, for any k 2 Rm
þ this latter value cannot exceed the total design cost

P
e2Ekeze. Moreover, Constraints

(4) are sufficient conditions over the space of all possible nonnegative k-vectors for ensuring the feasibility of the capacity
vector. This latter result is a consequence of Farkas Lemma for linear programming duality [14].

It is noteworthy that an alternative equivalent formulation has been derived by Gabrel et al. [7]. The decision variables of
this formulation are the binary variables bt

e (e 2 E; t ¼ 1; . . . ; LÞ where bl
e takes value 1 if the facility loaded on edge e is t P l,

and 0 otherwise. Hence, these variables satisfy

bl
e 6 bl�1

e ; 8l ¼ 2; . . . ; L: ð6Þ
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Clearly, we can express the ze variables as

ze ¼
XL

t¼1

bl
eðf l

e � f l�1
e Þ; 8e 2 E ð7Þ

with f 0
e � 0; and the y variables as

yl
e ¼ bl

e � blþ1
e ; 8l ¼ 1; . . . ; L� 1; 8e 2 E ð8Þ

yL
e ¼ bL

e8e 2 E: ð9Þ

Remark 1. Model (1)–(5) could be easily extended to accommodate several DCMND variants. In particular, in case where the
facilities are modular then it suffices to relax Constraint (2). Also, if multiple identical facilities could be installed on the same
link, then the decision variables yl

e ðe 2 E; l ¼ 1; . . . ; LÞ should be required to be nonnegative integers instead of binary.
Furthermore, the extension to edge-dependent capacities is straight forward.

3. Separation of metric inequalities

Although, it can be shown that it suffices to consider the metric inequalities defined by vectors k 2 Rm
þ in a set of extreme

rays of a well-defined cone [3], the number of these inequalities is exponential. It is therefore out of question to solve For-
mulation (1)–(5) without resorting to a constraint generation approach where violated cuts are iteratively generated ‘‘on the
fly” and appended to a relaxed master program. Given a solution ð�y;�zÞ to the relaxed master program that is defined by (1),
(2), (3), (5) and possibly a restricted subset of metric inequalities (4), we seek for violated metric inequalities by solving the
following separation problem.

Find k 2 Rm
þ ; such that

X
e2E

ke�ze <
XK

k¼1

dkl�kðkÞ ð10Þ

or prove that no such vector exists.
In this section, we successively describe two procedures for solving this separation problem. The first approach is an inex-

act nondifferentiable optimization-based separation algorithm, and the second one is an exact LP-based separation
algorithm.

3.1. Approximate separation of metric inequalities using a deflected subgradient algorithm

Define

f ðkÞ ¼
XK

k¼1

dkl�kðkÞ �
X
e2E

ke�ze ð11Þ

and

f � ¼maxkP0f ðkÞ: ð12Þ
Clearly, we have

f � 6 0() there is no k P 0 violating ð4Þ:
Moreover, since f ðakÞ ¼ af ðkÞ, 8a > 0; then if there exists k P 0 such that f ðkÞ > 0 then f � is unbounded. Consequently, for
solving the separation problem, we need to exhibit a vector k P 0 such that f ðkÞ > 0 or verify that f � 6 0.

Following Gondran and Minoux [9], we can observe that

XK

k¼1

dkl�kðkÞ ¼
XK

k¼1

dkminpk2Pk
ktpk; ð13Þ

where pk is the incidence vector of a path in G between sk and tk; and Pk is the polytope of the sk � tk paths in G. Now, for a
given k 2 Rm

þ ; let p�kðkÞ denote the incidence vector of a shortest sk � tk path in G with respect to the distance matrix ðkeÞe2E.
Thus, we have

XK

k¼1

dkl�kðkÞ ¼
XK

k¼1

dkk
tp�kðkÞ: ð14Þ

Hence, we get

f ðkÞ ¼ kt
XK

k¼1

dkp�kðkÞ � �z

 !
: ð15Þ
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It is easy to check that the vector

g �
XK

k¼1

dkp�kðkÞ � �z ð16Þ

is a subgradient of f ð:Þ at k.
Consequently, the separation problem defined by (10) might be solved for a given �z; by maximizing f ð:Þ. An approximate

solution to the problem defined by (12) is derived through using a deflected subgradient algorithm which is called the Aver-
age Direction Strategy (ADS), introduced by Sherali and Ulular [15]. We have chosen to implement ADS because we found that
this latter performs extremely well (despite its simplicity) and consistently outperforms other nondifferentiable optimiza-
tion algorithms [10]. In this procedure, at the qth iteration, a subgradient gq is computed after solving the shortest path prob-
lem between each pair of nodes. This is accomplished using Floyd–Warshall all-pairs shortest-paths algorithm that runs in
Oðn3Þ-time. Next, this current subgradient is used to compose a search direction cq in order to update the vector kq. This
direction is computed in the following way:

cq ¼ gq þ kg
qk

kcq�1k c
q�1 for q P 1 ð17Þ

and c0 ¼ g0:

A formal statement of ADS is given below.

Step 0: Initialization – choose k0 ¼ ð1; . . . ;1Þ as a starting Lagrangian multiplier vector and set q ¼ 0.
Step 1: Subgradient computation – given kq, compute f ðkqÞ and the current subgradient gq. If f ðkqÞ > 0 or gq ¼ 0 (practically,

if kgqk < 10�6), then stop. Otherwise, go to Step 2.
Step 2: Search direction computation – select a search direction cq using (17). If kcqk < 10�6, then set cq ¼ gq.
Step 3: Lagrangian multipliers update – set kqþ1 ¼ kq þ �qcq for some step-length �q ¼ �bq

f ðkqÞ
kcqk2 ; where bq 2 ð0;2� is a

step-length parameter.
Step 4: Termination test – If (kgqk < 10�6) or (the algorithm performs 20 consecutive non-improving iterations) then stop;

otherwise, Set q qþ 1 and go to Step 1.

In the foregoing scheme, the step-length parameter bq is computed according to the following rule: b0 ¼ 2 and bq is
halved from its previous value whenever f ðkqÞ has failed to increase for five consecutive iterations.

If at some iteration q, a vector satisfying f ðkqÞ > 0 is obtained, then the cut

X
e2E

kq
eze P

XK

k¼1

dkl�kðk
qÞ ð18Þ

is appended to the relaxed master program.

3.2. Exact separation of metric inequalities using linear programming duality

Given a solution ð�y;�zÞ to the relaxed master program, we can check whether the installed capacities permit the simul-
taneous flow of the K distinct point-to-point commodity demand flows by exactly solving a feasibility problem. This is
accomplished through finding a feasible multicommodity flow vector x in the digraph ~G ¼ ðV ;AÞ that is derived from G by
replacing each edge e 2 E by two arcs ði; jÞ and ðj; iÞ having opposite directions. The total flow that may pass through
these two arcs should not exceed the capacity of the facility loaded on edge e. Hence, the feasibility problem amounts
to solving

gð�y;�zÞ �Minimum
X
e2E

ne ð19Þ

subject to:

X
j:ði;jÞ2A

xk
ij �

X
j:ðj;iÞ2A

xk
ji ¼

dk if i ¼ sk

0 if i 2 V n fsk; tkg;
�dk if i ¼ tk

8><
>: 8k ¼ 1; . . . ;K; ð20Þ

XK

k¼1

xk
ij þ

XK

k¼1

xk
ji � ne 6 �ze; 8e ¼ fi; jg 2 E; ð21Þ

xk
ij P 0; 8ði; jÞ 2 A; k ¼ 1; . . . ;K; ð22Þ

ne P 0; 8e 2 E; ð23Þ

where ne (e 2 E) is a nonnegative artificial variable associated with edge e.
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For small- and medium-sized sparse graphs, Model (19)–(23) might be easily solved using a state-of-the-art LP solver.
Obviously, we have

gð�y;�zÞ > 0() ð�y;�zÞ violates a metric inequality:

Now, we describe how to generate such a violated metric inequality. To that aim, we associate with each balance constraint
(20) a dual variable aik ði 2 V ; k ¼ 1; . . . ;KÞ and with each capacity constraint (21) a nonnegative dual variable be

(8e ¼ fi; jg 2 E). Since for each k ¼ 1; . . . ;K; there is one redundant balance constraint, then we can set

atk ;k ¼ 0 for k ¼ 1; . . . ;K: ð24Þ

The dual of the feasibility problem is

Maximize
XK

k¼1

dkask ;k �
X
e2E

�zebe ð25Þ

subject to:

aik � ajk � bfi;jg 6 0; 8ði; jÞ 2 A; k ¼ 1; . . . ;K; ð26Þ
be 6 1; 8e 2 E; ð27Þ
be P 0; 8e 2 E: ð28Þ

Let ða�; b�Þ denote an optimal dual solution. By duality, we have

gð�y;�zÞ ¼
XK

k¼1

dka�sk ;k
�
X
e2E

�zeb
�
e ð29Þ

Thus, ð�y;�zÞ is feasible if and only if the inequality

X
e2E

b�eze P
XK

k¼1

dka�sk ;k
ð30Þ

holds.

Lemma 1. The inequality defined by (30) is a metric inequality.

Proof. It suffices to prove that a�sk ;k
is equal to the value of the shortest path in ~G between sk and tk ðk ¼ 1; . . . ;KÞ:

We observe that at optimality, if b� P 0 is an optimal dual vector, then we can find a corresponding optimal dual vector a�

by solving K independent subproblems, where problem k ðk ¼ 1; . . . ;KÞ is defined by

Maximize dkask ;k ð31Þ

subject to:

aik � ajk 6 b�fi;jg; 8ði; jÞ 2 A: ð32Þ

Now, consider the problem defined by

Maximize ask ;k ð33Þ

subject to (32).
The dual of (32), (33) is

Minimize
X
ði;jÞ2A

b�fi;jgxij ð34Þ

subject to:

X
j:ði;jÞ2A

xk
ij �

X
j:ðj;iÞ2A

xk
ji ¼

1 if i ¼ sk

0 if i 2 V n fsk; tkg;

�
ð35Þ

xk
ij P 0; 8ði; jÞ 2 A: ð36Þ

Clearly, this problem amounts to finding a shortest path in ~G between sk and tk with the arc costs b�fi;jg: Hence, using the pre-
viously introduced notation, we have a�sk ;k

¼ l�kðb
�Þ: h

Consequently, the exact separation of a metric inequality can be achieved through the exact solution of Model (19)–(23).

Remark 2. The complexity of each iteration of ADS is Oðn3Þ (which corresponds to the complexity of the Floyd–Warshall all-
pairs shortest-paths algorithm). Hence, the complexity of ADS is Oðhn3Þwhere h is the (unknown) number of iterations upon
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convergence. On the other hand, the exact approach requires solving a linear program having Oðmn2Þ variables and Oðn3Þ
constraints.

4. Enhancements of the constraint generation algorithm

Actually, a constraint generation algorithm that is solely based on the separation of the foregoing metric inequalities
would exhibit an extremely slow convergence [7]. In order to improve the efficiency of the solution approach, we propose
several enhancements that are described below.

4.1. Initialization of the constraint generation algorithm

Given W � V , a bipartition inequality has the following formX
e2dðWÞ

ze P dðWÞ; ð37Þ

where dðWÞ refers to the cumulative demand that must pass through the cut set dðWÞ: Hence,

dðWÞ ¼
X

k:jW\fsk ;tkgj¼1

dk: ð38Þ

It is easy to check that a bipartition inequality induced by a subset W � V corresponds to a metric inequality that is obtained
by setting the k-vector equal to the incidence vector of the cutset dðWÞ.

In our implementation, the initial relaxed master program (P0) includes a set of bipartition inequalities that are induced
by node subsets Wk

r; ðk ¼ 1; . . . ;K; r ¼ 1; . . . ; skÞ that are obtained using the following iterative procedure.

Generation of initial bipartition inequalities
1. Set Wk

1 ¼ fskg; r ¼ 1;
2. While ðvðWk

rÞ–ftkgÞ
Begin

2.1. Wk
rþ1 ¼ ðvðW

k
rÞ n ftkgÞ [ ðWk

rÞ
2.2. r rþ 1

End (While)
sk  r
End.

It is noteworthy that a similar procedure has been proved very useful for generating initial cuts of a network design prob-
lem with non-simultaneous commodity flow requirements [11].

4.2. Appending violated bipartition inequalities

Given a solution ð�y;�zÞ to the relaxed problem, we generate a set of violated bipartition inequalities in the following way.
For each commodity k ðk ¼ 1; . . . ;KÞ, we determine the minimum cut separating sk and tk in G where each edge e 2 E is as-
signed a capacity �ze. Clearly, this can be achieved by computing the maximum flow uk between sk and tk. Assume that the
resulting minimum cut is dðWkÞ. Then, we check if the following inequalityX

e2dðWkÞ

�ze < dðWkÞ ð39Þ

holds. If the answer is ‘‘yes”, then Constraint (37) is appended to the relaxed problem. This process is repeated for all com-
modities in turn. Hence, this procedure requires solving K maximum flow problems. Since, the maximum flow problem is
solvable in Oðn2

ffiffiffiffiffi
m
p
Þ-time see [1] then the generation of violated bipartition inequalities can be carried out in Oðn4

ffiffiffiffiffi
m
p
Þ-time.

Actually, this time complexity could be reduced to Oðn3
ffiffiffiffiffi
m
p
Þ-time using a special-purpose algorithm that computes the all-

pairs minimum cut problem by invoking only ðn� 1Þ applications of the single-pair minimum cut problem see for e.g. [1, p.
277-283]. Consequently, violated bipartition inequalities could be very efficiently generated using standard network flow
computations. At this point, it noteworthy that Gabrel et al. [7] have implemented a significantly more complex strategy
for generating violated bipartition inequalities. Indeed, given a solution ð�y;�zÞ to the relaxed problem, they maximize the ratio
of the right to the left hand sides of (39). Thus, they solve the following maximum ratio cut problem:

ðBPÞ : Find W� ¼ arg maxW�VqðWÞ where qðWÞ � dðWÞP
e2dðWÞ

ze
for W � V :

Clearly, if qðW�Þ > 1 then the bipartition inequality induced by W� is appended to the relaxed master program. However, BP
is an NP-hard problem and is therefore solved approximately via a variable-depth local search heuristic.

750 M. Mrad, M. Haouari / Applied Mathematics and Computation 204 (2008) 745–753
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4.3. Appending valid inequalities

Given a feasible solution �y; the graph Gð�yÞ ¼ ðV ;Að�yÞÞ that is obtained from G by removing all the edges e 2 E such thatPL
l¼1�yl

e ¼ 0 should be connected. Hence, we include in the initial relaxed master program ðP0Þ the obvious cut

X
e2E

XL

l¼1

yl
e P n� 1: ð40Þ

Moreover, define q� as the smallest possible sum of capacities that should be installed in any feasible solution. Clearly, this
value can be obtained by solving a multicommodity flow problem with all capacities equal to uL (the largest values) and unit
flow costs. Hence, we have

q� � Minimum
XK

k¼1

X
ði;jÞ2A

xk
ij ð41Þ

subject to (20), (22), and

XK

k¼1

xk
ij þ

XK

k¼1

xk
ji 6 uL; 8fi; jg 2 A: ð42Þ

Consequently,

X
e2E

XL

l¼1

ulyl
e P q� ð43Þ

is a valid inequality. Therefore, this latter inequality is appended to the initial relaxed master program.
Furthermore, if at some iteration of the constraint generation process the current solution �y is proven to violate some

metric inequality, then we append to the relaxed master program an additional cut that is generated as follows. Let
�E ¼ fe 2 E : �yL

e ¼ 0g and lðeÞ ðe 2 �EÞ be the index of the capacity chosen for edge e in the current solution. Clearly, in any fea-
sible solution there is at least one edge that must be loaded with a higher capacity. Consequently, the cut

X
e2�E

XL

l¼lðeÞ
yl

e P 1 ð44Þ

should be appended to the current relaxed master program.

4.4. Synthesis of the constraint generation procedure

Since bipartition inequalities can be efficiently generated, we initialize the constraint generation process by generating
these cuts. If the algorithm fails to identify a violated bipartition inequality, then we invoke the ADS for generating a violated
metric inequality. Although being inexact, this procedure often requires less computational effort than the exact LP-based
approach. When ADS fails to identify a violated metric inequality, the exact separation algorithm is invoked. A synthesis
of the proposed approach is given below.

Step 1: Initialization. Let P0 be the problem defined by (1), (2), (3), (5), (40), (43) and the initial bipartition inequalities that
are described in Section 4.1. Set q ¼ 0:

Step 2: MIP-solver. Set q qþ 1. Solve Pq using a MIP solver. Let ð�y; zÞ be an optimal solution to Pq.
Step 3: Bipartition cut identification. Generate violated bipartition inequalities by computing the minimum cut separating

each pair fsk; tkg ðk ¼ 1; . . . ;KÞ. If one or more violated bipartition constraints are found, then define Pqþ1 to be Pq

amended by the violated bipartition constraints and go to Step 2. Else, go to Step 4.
Step 4: Approximate separation of a metric inequality. Invoke algorithm ADS for identifying a violated metric inequality. If a

violated metric inequality is found, then define Pqþ1 to be Pq amended by the violated inequalities (18) and (44)
and go to Step 2. Else, go to Step 5.

Step 5: Exact feasibility test. Invoke an LP solver to check if ð�y; zÞ is feasible. If a feasible multicommodity flow is found then
output ð�y; zÞ as an optimum. Else go to Step 6.

Step 6: Exact separation of a metric inequality. Define Pqþ1 to be Pq amended by the violated inequalities (30) and (44) and
go to Step 2.

5. Computational experiments

We have coded the proposed algorithm in Microsoft Visual C++ (version 6.0) in concert with the CPLEX 9.0 solver. All the
computational experiments were carried out on a Pentium IV 2.4 GHz Personal Computer with 3.2 GB RAM. A maximum CPU
time limit was set to 1 h.
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The test-bed we have used consists of a set of 20 randomly generated instances. The numbers of nodes and edges range
from 10 to 50, and 15 to 100, respectively, and the number of facility types is L ¼ 3 for all instances. In order to account for
the economy of scale phenomenon which is very common in the telecommunication setting, the cost of installing a capacity
ul on edge e 2 E is a concave function of its capacity and is computed as f l

e ¼ dhe
ffiffiffiffi
ul
p e where he is the length of edge e.

Results are displayed in Table 1. For each instance, we report n : number of nodes, m : number of edges, K : number of
commodities, Time: total CPU time in seconds, Sol: value of the optimal solution, BC: number of generated bipartition cuts,
MI-ADS : number of metric inequalities that are generated using ADS, MI-LP: number of metric inequalities that are gener-
ated using the LP approach.

We see from Table 1 that the proposed approach is able to solve to optimality all the instances, but only two, within a
reasonable CPU time. However, we observe that the metric inequalities are scarcely generated. This observation is consistent
with the results reported by Gabrel et al. [7]. On the contrary, the bipartition cuts, despite their simplicity, prove to be ex-
tremely useful for deriving proven optimal solutions.

Table 1
Results of the constraint generation approach

n m K Time Sol BC MI-ADS MI-LP

10 15 45 0.078 1041 72 0 0
15 20 105 0.234 2101 268 0 0
15 25 105 0.39 2500 293 0 0
15 30 105 0.578 2447 408 0 0
20 35 190 0.797 3572 674 0 0
20 40 190 0.625 3537 599 0 0
20 45 190 0.75 3392 759 0 0
21 40 210 8.531 4245 2031 3 0
22 45 231 1.735 4961 1167 0 0
23 50 253 16.563 5395 2815 0 0
24 55 276 4.172 5912 1229 0 0
25 50 300 1103.845 6154 7593 0 8
25 60 300 149.957 5705 4998 0 0
30 60 435 108.643 8645 7259 0 0
30 65 435 155.941 8170 7538 0 7
35 70 595 >3600 a 14368 0 9
40 75 780 860.148 15505 17667 0 0
45 80 990 >3600 a 26464 0 4
50 90 1225 93.719 24254 11585 0 0
50 100 1225 26.344 23275 7273 0 0

a Indicates that the instance remained unsolved after 1 h CPU time.

Table 2
Impact of removing the initial cuts

n m K Time Sol BC MI-ADS MI-LP Time-Ratio

10 15 45 0.171 1041 241 0 0 2.205
15 20 105 0.374 2101 597 0 0 1.602
15 25 105 1.077 2500 626 0 0 2.764
15 30 105 3.687 2447 938 0 0 6.38
20 35 190 2.296 3572 1388 0 0 2.882
20 40 190 2.625 3537 1208 0 0 4.2
20 45 190 7.453 3392 1856 0 0 9.938
21 40 210 58.514 4245 2641 0 0 6.859
22 45 231 23.904 4961 2675 0 0 13.778
23 50 253 1171.517 5395 5438 0 0 70.731
24 55 276 668.871 5912 6350 0 0 160.324
25 50 300 >3600 a 9347 0 0 a

25 60 300 >3600 a 7419 0 0 a

30 60 435 >3600 a 9538 0 0 a

30 65 435 >3600 a 9343 0 0 a

35 70 595 >3600 a 12742 0 0 a

40 75 780 >3600 a 16860 0 0 a

45 80 990 >3600 a 17405 0 0 a

50 90 1225 >3600 a 24007 0 0 a

50 100 1225 >3600 a 25162 0 0 a

a Indicates that the instance remained unsolved after 1 h CPU time.
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In addition, we have investigated the impact of the initial cuts. To that aim, we have dropped these constraints and ini-
tialized the constraint generation process from scratch. The results are displayed in Table 2. In this Table, the column Time_-
Ratio includes the ratio of the CPU time of the simplified variant to the original algorithm. Table 2 shows the advantage of
including the initial cuts. Indeed, we observe that removing these cuts caused, a very significant increase of the required CPU
time. Moreover, 9 instances remained unsolved after 1 h CPU time.

6. Conclusion

In this paper, we have described an exact approach for solving the discrete cost multicommodity network design prob-
lem. We have presented the results of computational experiments that provide evidence that the efficient combination of
effective initial valid cuts, bipartition inequalities (very simply) generated through max-flow computations, and an LP-based
exact separation algorithm of metric inequalities render the ability to optimally solve instances having up to 50 nodes and
100 edges.

As a topic for future research, we recommend the investigation of an alternative formulation of DCMND with decision
variables representing paths between sources and sinks. This latter formulation could be solved using a column generation
approach. We expect that a state-of-the-art branch-and-price algorithm would prove useful for solving large-scale DCMND
instances but this needs to be investigated carefully.
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