King Saud University

College of Sciences

Department of Mathematics

First Examination Math 244 Semester I, (1441), Duration: 1hr. 30 mn

Calculators are not allowed

Question 1

1. Consider the matrices A and B such that $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ and $AB = A + 2I_3$.

Find the matrices A^{-1} and B.

2. Consider the matrices $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} -2 & 1 & -1 & 2 \\ 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$. If E is a 4×4 matrix such that $EC^2 + ED = 2I_4$, then find E^{-1} .

3. Find the set of solutions of the linear system with the augmented matrix

$$[A:B] = \begin{bmatrix} 1 & 0 & -2 & 1 & | & 4 \\ -1 & 0 & 2 & 0 & | & -2 \\ 0 & 0 & 1 & -1 & | & 1 \\ 0 & 0 & 0 & 1 & | & 2 \end{bmatrix}.$$

Question 2

1. a) Find the matrix $\operatorname{adj}(A)$ if $A = \begin{pmatrix} 1 & 2 & -3 \\ 3 & -1 & 2 \\ -2 & 4 & -2 \end{pmatrix}$.

- b) Find $\operatorname{adj}(A).A$.
- 2. Find the conditions on a, b such that the following linear system is consistent

$$\begin{cases} x + 2y + z + 3t = a \\ 2x + y + 3z + 2t = b \\ -x + 7y - 4z + 9t = 1 \end{cases}$$

Question 3

- 1. a) Show that the set $E = \{(x, y, z, w) \in \mathbb{R}^4; x y + z = 0, 2x + y z = 0\}$ is a subspace of \mathbb{R}^4 .
 - b) Find a basis of the subspace E.
- 2. Let $v_1 = (1, -1, 2, 0, 3), v_2 = (-1, 2, 0, 1, 2), v_3 = (1, 1, -1, 1, 1).$
 - a) Show that the set of vectors $\{v_1, v_2, v_3\}$ is linearly independent.
 - b) Find $a, b, c \in \mathbb{R}$ such that $(-2, 3, 5, 2, 11) = av_1 + bv_2 + cv_3$.

Question 1

$$1. \ A^{-1} = \begin{pmatrix} -1 & 0 & 1 \\ 4 & -2 & -3 \\ -1 & 1 & 1 \end{pmatrix}, \ B = I + 2A^{-1} = \begin{pmatrix} -1 & 0 & 2 \\ 8 & -3 & -6 \\ -2 & 2 & 3 \end{pmatrix}.$$

$$2. \ C^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ E^{-1} = \frac{1}{2}(C^2 + D) = \frac{1}{2} \begin{pmatrix} -1 & 1 & -1 & 2 \\ 1 & 6 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

$$3. \ \text{Gauss-Jordan} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 8 \\ 0 & 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$x = 8, y \in \mathbb{R}, z = 3, t = 2. \ S = \{(8, y, 3, 2); \ y \in \mathbb{R}\}.$$

Question 2

1. a)
$$\operatorname{adj}(A) = \begin{pmatrix} -6 & -8 & 1\\ 2 & -8 & -11\\ 10 & -8 & -7 \end{pmatrix}$$
.
b) $\operatorname{adj}(A) \cdot A = |A|I_3 = -32I_3$.
2. $-5a + 3b + 1 = 0$.

Question 3

1. a)
$$E = \{(x, y, z, w) \in \mathbb{R}^4; x - y + z = 0, 2x + y - z = 0\} = \{X = (x, y, z, w) \in \mathbb{R}^4; AX = 0\}$$
, where $A = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & 1 & -1 & 0 \end{pmatrix}$ is a subspace of \mathbb{R}^4 .
b) $\begin{cases} x - y + z = 0 \\ 2x + y - z = 0 \end{cases} \iff x = 0, y = z$. $E = \{(0, y, y, w) = y(0, 1, 1, 0) + w(0, 0, 0, 1); y, w \in \mathbb{R}\}$. Then $B = \{(0, 1, 1, 0), (0, 0, 0, 1)\}$ is a basis of E .

2. a)
$$xv_1 + yv_2 + zv_3 = (0, 0, 0, 0, 0) \iff x = y = z = 0.$$

b) $a = 2, b = 3, c = -1.$

•