King Saud University

College of Sciences

Department of Mathematics

First Examination Math 244 Semester I, (1441), Duration: 1hr. 30 mn

Calculators are not allowed

Question 1

1. Consider the matrices A and B such that $A=\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 2\end{array}\right)$ and $A B=A+2 I_{3}$.

Find the matrices A^{-1} and B.
2. Consider the matrices $C=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$ and $D=\left(\begin{array}{cccc}-2 & 1 & -1 & 2 \\ 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0\end{array}\right)$. If E is a 4×4 matrix such that $E C^{2}+E D=2 I_{4}$, then find E^{-1}.
3. Find the set of solutions of the linear system with the augmented matrix

$$
[A: B]=\left[\begin{array}{cccc|c}
1 & 0 & -2 & 1 & 4 \\
-1 & 0 & 2 & 0 & -2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

Question 2

1. a) Find the matrix $\operatorname{adj}(A)$ if $A=\left(\begin{array}{ccc}1 & 2 & -3 \\ 3 & -1 & 2 \\ -2 & 4 & -2\end{array}\right)$.
b) Find $\operatorname{adj}(A) . A$.
2. Find the conditions on a, b such that the following linear system is consistent

$$
\left\{\begin{array}{c}
x+2 y+z+3 t=a \\
2 x+y+3 z+2 t=b \\
-x+7 y-4 z+9 t=1
\end{array}\right.
$$

Question 3

1. a) Show that the set $E=\left\{(x, y, z, w) \in \mathbb{R}^{4} ; x-y+z=0,2 x+y-z=\right.$ $0\}$ is a subspace of \mathbb{R}^{4}.
b) Find a basis of the subspace E.
2. Let $v_{1}=(1,-1,2,0,3), v_{2}=(-1,2,0,1,2), v_{3}=(1,1,-1,1,1)$.
a) Show that the set of vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
b) Find $a, b, c \in \mathbb{R}$ such that $(-2,3,5,2,11)=a v_{1}+b v_{2}+c v_{3}$.

Solution of the first Examination Math 244 Semester I 1441

Question 1

1. $A^{-1}=\left(\begin{array}{ccc}-1 & 0 & 1 \\ 4 & -2 & -3 \\ -1 & 1 & 1\end{array}\right), B=I+2 A^{-1}=\left(\begin{array}{ccc}-1 & 0 & 2 \\ 8 & -3 & -6 \\ -2 & 2 & 3\end{array}\right)$.
2. $C^{2}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), E^{-1}=\frac{1}{2}\left(C^{2}+D\right)=\frac{1}{2}\left(\begin{array}{cccc}-1 & 1 & -1 & 2 \\ 1 & 6 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & -1 & 1\end{array}\right)$.
3. Gauss-Jordan $\left[\begin{array}{cccc|c}1 & 0 & 0 & 0 & 8 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
x=8, y \in \mathbb{R}, z=3, t=2 . S=\{(8, y, 3,2) ; y \in \mathbb{R}\}
$$

Question 2

1. a) $\operatorname{adj}(A)=\left(\begin{array}{ccc}-6 & -8 & 1 \\ 2 & -8 & -11 \\ 10 & -8 & -7\end{array}\right)$.
b) $\operatorname{adj}(A) \cdot A=|A| I_{3}=-32 I_{3}$.
2. $-5 a+3 b+1=0$.

Question 3

1. a) $E=\left\{(x, y, z, w) \in \mathbb{R}^{4} ; x-y+z=0,2 x+y-z=0\right\}=\{X=$ $\left.(x, y, z, w) \in \mathbb{R}^{4} ; A X=0\right\}$, where $A=\left(\begin{array}{cccc}1 & -1 & 1 & 0 \\ 2 & 1 & -1 & 0\end{array}\right)$ is a subspace of \mathbb{R}^{4}.
b) $\left\{\begin{array}{c}x-y+z=0 \\ 2 x+y-z=0\end{array} \Longleftrightarrow x=0, y=z . E=\{(0, y, y, w)=\right.$ $y(0,1,1,0)+w(0,0,0,1) ; y, w \in \mathbb{R}\}$. Then $B=\{(0,1,1,0),(0,0,0,1)\}$ is a basis of E.
2. a) $x v_{1}+y v_{2}+z v_{3}=(0,0,0,0,0) \Longleftrightarrow x=y=z=0$.
b) $a=2, b=3, c=-1$.
