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Abstract
In view of high mortality associated with coronary artery disease (CAD), development of an early predicting tool will be 
beneficial in reducing the burden of the disease. The database comprising demographic, conventional, folate/xenobiotic 
genetic risk factors of 648 subjects (364 cases of CAD and 284 healthy controls) was used as the basis to develop CAD risk 
and percentage stenosis prediction models using ensemble machine learning algorithms (EMLA), multifactor dimensionality 
reduction (MDR) and recursive partitioning (RP). The EMLA model showed better performance than other models in disease 
(89.3%) and stenosis prediction (82.5%). This model depicted hypertension and alcohol intake as the key predictors of CAD 
risk followed by cSHMT C1420T, GCPII C1561T, diabetes, GSTT1, CYP1A1 m2, TYMs 5′-UTR 28 bp tandem repeat and 
MTRR A66G. MDR and RP models are in agreement in projecting increasing age, hypertension and cSHMTC1420T as the 
key determinants interacting in modulating CAD risk. Receiver operating characteristic curves exhibited clinical utility of 
the developed models in the following order: EMLA (C = 0.96) > RP (C = 0.83) > MDR (C = 0.80). The stenosis prediction 
model showed that xenobiotic pathway genetic variants i.e. CYP1A1 m2 and GSTT1 are the key determinants of percent-
age of stenosis. Diabetes, diet, alcohol intake, hypertension and MTRR A66G are the other determinants of stenosis. These 
eleven variables contribute towards 82.5% stenosis. To conclude, the EMLA model exhibited higher predictability both in 
terms of disease prediction and stenosis prediction. This can be attributed to higher number of iterations in EMLA model 
that can increase the prediction accuracy.
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Introduction

Coronary artery disease (CAD) is one of the major lead-
ing causes of death all over the world with an estimated 
17.7 million deaths from CAD in 2015. Over three quarters 
of these deaths are taking place in low- and middle-income 
countries. This prompts that subjects with conventional 
risk factors such as diabetes, hypertension, dyslipidemia 
or family history of CAD should be tested for early athero-
sclerotic changes to facilitate early detection and manage-
ment of the disease [1]. Among the nutritional factors that 
are likely to modulate risk for CAD, the most prominent 
being folate and B-complex vitamins whose deficiencies 
induce oxidative stress by increasing homocysteine levels 
and by interfering with phase II detoxification of polycy-
clic aromatic hydrocarbons [2].

Lower S-adenosyl methionine and 5-methyltetrahydro-
folate levels, and higher total plasma homocysteine levels 
were observed in CAD patients [3]. ER alpha hypermeth-
ylation was reported in coronary atherosclerotic plaques 
when compared to normal aorta [4]. Treatment with 3-dea-
zaadenosine was shown to prevent smooth muscle cell pro-
liferation and neointima formation by interfering with Ras 
methylation [5]. LDL was found to induce expression of 
p66shc via hypomethylation of its promoter thus mediating 
a dysfunctional endothelial cell surface with proadhesive 
and procoagulant features [6].

Methylation of ATP-binding cassette A1 (ABCA1) was 
shown to lower HDL levels thus increasing risk for CAD 
[7]. L5, the most negatively charged sub-fraction of low-
density lipoprotein that is capable of inducing apoptosis, 
was shown to inhibit fibroblast growth factor-2 (FGF-2) 
by inducing hypermethylation of its promoter [8]. Hyper-
lipidemia was shown to be associated with methylation of 
ATP-binding cassette, sub-family G (WHITE), member 1 
(ABCG1), lipase, hepatic (LIPC) and phospholipid trans-
fer protein (PLTP) [9]. Hypermethylation of dimethylar-
ginine dimethylaminohydrolase 2 (DDAH2) was shown to 
impair function of endothelial progenitor cells thus playing 
an important role in the pathophysiology of CAD [10].

Further, differentially methylated regions in folate 
pathway genetic loci i.e. transcobalamin-2 (TCN2) pro-
moter, cysthathionine beta synthase (CBS) 5′UTR, ami-
nomethyltransferase (AMT), paraoxonase/arylesterase 
1 (PON1) were observed [11]. The aberrations in folate 
metabolism were shown to induce altered gene expres-
sion of extracellular superoxide dismutase (EC-SOD), 
glutathione-S-transferase (GST)P1, and BCL2/Adenovirus 
E1B 19 kDa protein-interacting protein 3 (BNIP3) thus 
contributing to the increased oxidative stress and increased 
susceptibility to CAD [12].

Aim

These studies are point towards the interplay among the 
conventional risk factors, folate and xenobiotic meta-
bolic pathways and epigenome modulating risk for CAD. 
In order to explore these interactions, we have used the 
data from two of our earlier studies on folate [13] and 
xenobiotic [14] metabolic pathways for the development 
of coronary artery stenosis prediction model. The results 
of the first study showed that methylene tetrahydrofolate 
reductase (MTHFR) C677T and methyltetrahydrofolate 
homocysteine methyltransferase reductase (MTRR) A66G 
increase CAD risk by 1.61 and 1.92-folds, while thymi-
dylate synthase (TYMS) 5′-UTR 2R-allele reduces the 
CAD risk by 34% [13]. The results of the second study 
showed that two cytochrome P450 1A1 (CYP1A1) haplo-
types (m1–m2–m3) i.e. CAC and TGC increase the CAD 
risk, while TAC haplotype confers protection [14]. Glu-
tathione-S-transferase (GSTT1) null genotype was shown 
to increase CAD risk [14]. In the current study, a CAD 
risk prediction was developed using demographic (n = 5), 
conventional (n = 3) and genetic (n = 14) variables as input 
variables and percentage of stenosis as output to explore 
the potential gene–gene and gene-environmental interac-
tions. To achieve this objective, multifactor dimensionality 
reduction (MDR), recursive partitioning (RP) and machine 
learning algorithms (EMLA) were employed.

Methods

Study population

The study population comprised of 648 subjects (364 cases 
with documented CAD and 284 healthy controls). Cases 
were angiographically documented to have CAD with the 
stenosis in the range of 50–90% (67.34 ± 13.00%) and con-
trols were ethnicity-matched to cases. The subjects with 
chronic inflammatory disease, immunological disease and 
cancer were excluded.

Demographic data such as age, gender, body mass index 
(BMI), smoking and alcohol intake were obtained from the 
subjects. Along with the demographic data, conventional 
risk-factors like hypertension, diabetes, hyperlipidemia 
were also included. The study protocol was approved by 
the Institutional ethical committee of Nizam’s Institute of 
Medical Sciences, Hyderabad. All the subjects consented 
for the study.
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Analysis of genetic polymorphisms

Whole blood samples collected in EDTA were used for 
genomic DNA extraction using phenol–chloroform extrac-
tion method. PCR-RFLP method was used for the analy-
sis of glutamate carboxypeptidase II (GCPII) C1561T, 
reduced folate carrier 1 (RFC1) G80A, cytosolic serine 
hydroxyl methyltransferase (cSHMT) C1420T, MTHFR 
C677T, methionine synthase (MTR) A2756G, MTRR 
A66G, CYP1A1 m1, CYP1A1 m2, CYP1A1 m3, cat-
echolamine-O-methyl transferase (COMT) H108L poly-
morphisms. PCR-AFLP method was used for the analysis 
of TYMS 5′-UTR 28 bp tandem repeat. Multiplex PCR 
method was used to analyze deletions in GSTT1 and 
GSTM1.

Risk prediction models

Machine learning algorithm

We have developed Ensemble machine learning algorithms 
using the risk factors for CAD as the input variables and 
CAD risk or percentage of stenosis as the predictor. Ensem-
ble constructs a set of classifiers and classifies new data 
points by taking a note of their predictions. Bayesian averag-
ing or error-correcting output coding, bagging and boosting 
were used as the basis of the model.

Multifactor dimensionality reduction (MDR)

We have developed MDR model by incorporating the 22 
variables as x1, x2, x3, …, x22 and output variable as class. 
Being a non-parametric and model-free method, MDR 
reduced the dimensionality of multi-locus information 
and identified most significant variables associated with 
an increased risk for CAD in terms of univariate, bivariate 
and trivariate analysis along with providing Frutcherman-
Rheingold plots that depict strength of association in terms 
of entropy. This analysis was carried out using the compu-
tational website http://www.multi facto rdime nsion ality reduc 
tion.org.

Recursive partitioning

We have constructed a regression tree using 22 variables 
as input variables and categorical variable as output vari-
able. The stem of the tree depicts the main predictor while it 
branches show various interactions and decision levels. This 
analysis was carried out using the computational website 
http://www.wessa .net.

Clinical utility of the risk prediction models

We have used receiver-operating characteristic (ROC) 
curves as the indices of clinical utility of these models as 
they depict overall accuracy in terms of area under the curve 
and represent true positive rate (sensitivity) vs. false posi-
tive rate (1 − specificity). This analysis was carried out using 
GraphPad Prism software.

Results

Univariate analysis

Univariate analysis of demographic and genetic variables 
was tabulated as Table 1. This analysis revealed that veg-
etarian diet, alcohol intake, diabetes and hypertension 
as nutritional or life style risk factors. Among the folate 
pathway genetic variants, GCPII C1561T, MTHFR C677T 
and MTRR A66G are risk factors for CAD while TYMS 
5′-UTR 28 bp tandem repeat and cSHMT C1420T confer 
protection against CAD. Among the xenobiotic pathway 

Table 1  Demographic and genetic characteristics of cases and con-
trols

Continuous variables were presented in mean ± standard deviation 
format while categorical variables were presented either in raw num-
bers or in percentage. Student t test and Fisher exact test were per-
formed for continuous and categorical variables, respectively

Variable Cases Controls P value

Age 53.8 ± 10.9 52.5 ± 9.8 0.12
Gender 293:71 225:56 0.97
Body mass index (kg/m2) 24.1 ± 3.4 24.2 ± 3.5 0.80
Non-vegetarian diet 215:70 240:37 0.001*
Smoking 84:180 82:194 0.66
Alcohol intake 70:217 30:246 < 0.0001*
Diabetes 95:201 18:258 < 0.0001*
Hypertension 127:163 33:242 < 0.0001*
GCPII C1561T 12.45% 5.12% < 0.0001*
RFC1G80A 42.56% 39.73% 0.32
cSHMT C1420T 44.44% 58.54% 0.001*
TYMS 5′-UTR 28 bp tandem 

repeat
26.95% 35.84% < 0.0001*

MTHFR C677T 14.33% 8.75% 0.005*
MTR A2756G 30.05% 29.57% 0.18
MTRR A66G 36.68% 28.91% 0.006*
CYP1A1 m1 22.32% 17.02% 0.09
CYP1A1 m2 17.66% 12.99% 0.04*
CYP1A1 m4 0.57% 0.36% 0.93
COMT H108L 17.71% 19.32% 0.38
GSTT1 11.47% 6.91% 0.01*
GSTM1 9.69% 9.57% 1.00

http://www.multifactordimensionalityreduction.org
http://www.multifactordimensionalityreduction.org
http://www.wessa.net
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genetic variants, CYP1A1 m1 and GSTT1 null variants 
are associated with CAD risk.

CAD risk prediction using machine learning 
algorithm (EMLA)

As shown in Fig. 1, EMLA model based on classification 
template was developed using 11 risk factors identified in 
univariate analysis as input variables while presence or 

Fig. 1  The Ensemble machine learning-based prediction model. a 
Architecture of machine learning algorithm: machine learning algo-
rithm identified hypertension, alcohol intake, cSHMT C1420T, 
GCPII C1561T, diabetes mellitus, GSTT1, CYP1A1 m2, TYMS 

5′-UTR 28 bp tandem repeat and MTRR A66G as the determinants of 
CAD risk. b Receiver operating characteristic (ROC) curve depicting 
the clinical utility of this model: The area under the ROC curve was 
0.96 with 89.3% accuracy in predicting CAD risk
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absence of CAD was used as the output variable. This risk 
prediction model had 89.3% accuracy in predicting CAD 
risk with a precision of 85.3% and recall rate of 95.2%. True 
positive and false positive rates were 95.19 and 16.67%. The 
area under the ROC curve was 0.96. With the given true 
positive and true negative predictions with type I alpha error 
of 0.05 for 80% of power, required sample size is 345. We 
have studied 648 subjects in total, substantiating the statisti-
cal power of the study.

The life style risk factors namely hypertension, alcohol 
intake and diabetes are in the apex of the model as key deter-
minants. Among the genetic risk factors, cSHMT C1420T 
was the key determinant of CAD risk.

The simulations of the developed model revealed that 
vegetarian or non-vegetarian diet in the absence of other risk 
factors is not associated with CAD risk. Alcohol intake was 
shown to exert CAD risk, which is negated in the presence 
of cSHMT 1420 TT-genotype. However, presence of variant 
alleles at MTHFR and MTRR loci synergistically counteract 
the protection conferred by cSHMT 1420 TT-genotype.

Gender‑specific associations

EMLA model of men showed age as an important contribu-
tor in modulating CAD risk. In subjects with age > 52 years, 
cSHMT CC-genotype is a risk factor for CAD. In diabetic 
subjects with age > 52 years, low dietary folate intake 
and TYMS 5′-UTR 28 bp tandem repeat are risk factors 
for CAD. In non-diabetic subjects with age > 52 years, 
BMI > 26.88 kg/m2 and low dietary folate intake are risk 
factors for CAD. In subjects with age < 52 years, presence 
of hypertension and BMI > 23.8 kg/m2 were associated with 
CAD risk. In non-hypertensive subjects with age < 52 years, 
alcohol consumption followed by presence of CYP1A1 m2 
or cSHMT CC and CT genotypes is associated with CAD 
risk (Supplementary Fig. 1).

In post-menopausal women, diabetes is a risk factor for 
CAD. In the absence of diabetes, cSHMT CC, CYP1A1 
m2 and TYMS 5′-UTR 3R3R are the risk factors for CAD. 
Among these women with low folate intake, MTHFR C677T 
is a risk factor for CAD. In pre-menopausal women, fam-
ily history of CAD is a risk factor for CAD. Diabetes and 
low folate intake are associated with CAD risk. Pre-meno-
pausal status, absence of diabetes, lower BMI and CYP1A1 
m2 genotype are associated with reduced risk for CAD in 
women. MTHFR C677T was shown to be a risk factor for 
CAD in post-menopausal women with low folate intake 
(Supplementary Fig. 2).

Multifactor dimensionality reduction

As shown in Fig. 2a, hypertension is the most significant 
risk factor for CAD. As shown in Fig. 2b, alcohol intake 

is another important risk factor for CAD. Synergistic risk 
inflation was observed in hypertensive subjects with alco-
hol intake. As shown in Fig. 2c, subjects with cSHMT TT-
genotype are protected against alcohol-mediated CAD risk. 
As shown in Fig. 3, Frutcherman-Rheingold plot depicted 
the following order of strength: hypertension > cSHMT 
C1420T > alcohol intake. Synergistic interaction between 
hypertension and alcohol intake increases CAD risk. The 
cSHMT C1420T was shown to have counteracting interac-
tions alcohol intake and hypertension in reducing risk for 
CAD. The area under the curve for MDR model was 0.80 
(95% CI 0.75–0.85), p < 0.0001.

Recursive partitioning

As shown in Fig. 4, age in decades is the most important 
predictor in this model. In subjects with age > 50 years, 
cSHMT 1420 CC genotype is associated with CAD risk. 
In subjects with age < 50 years, lack of hypertension and no 
alcohol consumption reduces the CAD risk significantly. The 
area under the curve of ROC was 0.83 (95% CI 0.79–0.88), 
p < 0.0001.

Stenosis prediction using machine learning 
algorithm

A stenosis prediction model was developed using machine 
learning tools (Fig. 5a). This model highlighted the impor-
tance of xenobiotic pathway genetic variants i.e. CYP1A1 
m2 and GSTT1 in modulating percentage of stenosis. 
Among the life style risk factors, diabetes, diet, alcohol and 
hypertension were found to be key determinants of percent-
age of stenosis. Among the folate pathway genetic variants, 
MTRR A66G alone was shown to be one of the determinants 
of percentage of stenosis. These eleven variables contribute 
towards 82.5% stenosis (Fig. 5b).

Discussion

In the current study, EMLA, MDR and RP based risk predic-
tion models for CAD and EMLA based prediction models of 
percentage of stenosis were developed. The EMLA model 
being complex performed well both in predicting CAD 
risk and percentage of stenosis. Hypertension and alcohol 
intake are the key predictors of CAD risk in EMLA model 
followed by cSHMT C1420T, GCPII C1561T, diabetes, 
GSTT1, CYP1A1 m2, TYMs 5′-UTR 28 bp tandem repeat 
and MTRR A66G. The MDR and RP models are in agree-
ment with each other in portraying hypertension, cSHMT 
C1420T and alcohol intake as the key determinants of CAD 
risk out of the 22 variables tested. In subjects with age < 50 
years, hypertension and alcohol intake were observed as 
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key modulators of CAD risk. Gender-based differences in 
association with CAD were also explored. Diabetes is a 
risk factor for CAD specifically in men with age > 52 years 
and in both pre- and post-menopausal women. In men with 
age < 52 years, hypertension is the main risk factor for CAD. 
In both genders, obesity is an important risk factor for CAD. 

Alcohol consumption followed by presence of cSHMT and 
CYP1A1 m2 variant alleles was shown to exert CAD risk 
in non-hypertensive men. Even in post-menopausal women 
cSHMT and CYP1A1 m2 are risk factors for CAD. In pre-
menopausal women, family history of CAD, diabetes and 
low folate intake increase the risk for CAD.

Fig. 2  Multifactor dimensionality reduction analysis. a Univariate 
analysis: hypertension is the key determinant of CAD risk. b Bivari-
ate analysis: reduced risk for CAD was observed in non-hypertensive 
and non-alcoholic subjects. Alcohol intake and hypertension are asso-
ciated individually and synergistically with increased risk for CAD. 

c Trivariate analysis: cytosolic SHMT C1420T confers protection 
against alcohol intake-mediated CAD risk. The light and dark back-
ground suggests no risk and high risk for CAD, respectively. Two 
bars in each block represent number of cases and controls
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The developed EMLA model showed the association of 
alcohol intake with CAD risk followed by counteracting 
effect of cSHMT 1420 TT-genotype in negating this risk. It 
was reported that alcohol intake is associated with erythro-
cyte folate deficiency [15] and presence of cSHMT 1420 TT-
genotype increases H-bonding interactions between cSHMT 
protein and tetrahydrofolate thus increasing the folate flux 
through induction of futile folate cycle [16]. However, the 

presence of variant alleles at MTHFR and MTRR loci syn-
ergistically impair remethylation of homocysteine signifi-
cantly and contribute towards increased CAD risk [13]. The 
presence of 677C > T variant in MTHFR induces thermo-
lability thus enhancing the propensity of MTHFR active 
dimer into inactive monomers with decreased FAD-binding 
capacity [17]. In the presence of low dietary folate intake 
along with MTHFR 677 C > T, the 5-methyl tetrahydrofolate 
synthesis is significantly impaired thus affecting S-adeno-
sylmethionine levels. S-adenosylmethionine is essential for 
catecholamine-O-methyl transferase activity necessary for 
the conversion of catechol estrogens to methoxy estrogens. 
In post-menopausal women with low folate and MTHFR 
677 C > T this conversion might be affected due to low SAM 
thus increasing catechol estrogen leading to formation of 
quinones and semiquinones that induced oxidative lesions in 
DNA. Consistent with our observation, Tanis et al. reported 
twofold increase in risk for myocardial infarction in women 
with MTHFR 677 TT-genotype when their folate levels are 
below the median [18].

CYP1A1 m2, GSTT1, diabetes, diet, alcohol intake, 
hypertension and MTRR A66G are the key determinants 
of stenosis. Our results are in agreement with another risk 
prediction model based on ANN which demonstrated hyper-
tension, diabetes, hyperlipidemia and homocysteine as the 
determinants of coronary artery stenosis [19]. Keeping dia-
betes and hypertension under control followed by regular 
exercise can drastically reduce the percentage of stenosis 
as depicted by this model. This is further supported by a 
recent study which depicted positive correlation between 
the admission HbA1C level and number of affected vessels 

Fig. 3  Frutcherman-Rheingold plot depicting interactions between 
variables. This illustrates the strength of bonding based on entropy 
levels. The order of strength of association of variables: hypertension 
(HTN) > cSHMT C1420T > alcohol intake. Synergistic interaction 
(entropy: 0.41%) was observed between hypertension and alcohol 
while cSHMT C1420T counteracts the risk associated with alcohol 
intake (entropy: − 0.82) and hypertension (entropy: − 2.94%)

Fig. 4  Recursive partitioning 
model for CAD prediction. 
This illustrates age in decade 
as the main predictor followed 
by cSHMT in subjects with 
> 50 years and hypertension in 
subjects < 50 years. Subjects 
with < 50 years are at lower risk 
of CAD is they are non-alco-
holic and non-hypertensive
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[20]. CYP1A1 and GSTT1 polymorphisms were shown to 
increase oxidative DNA damage and thus contribute to CAD 
risk [14].

A recent large scale study has developed a similar CAD 
risk prediction model using age, gender, type of chest pain, 
diabetes, hypertension, dyslipidemia, smoking status and 
laboratory data as the predictors [21]. This model showed 
an AUC of 0.72. The predictability of our model is higher 

due to the presence of additional genetic variables. The risk 
reduction by a decade in subjects with cSHMT TT geno-
type can be attributed to decreased oxidative stress due to 
increased folate pool and antioxidant status as reported ear-
lier [22]. Carotid intima-media thickness was shown to have 
positive association with CBS rs2851391 × MTR rs180508 
while exhibiting inverse association with vitamin  B6,  B12 
and folate [23], which is consistent with the current study in 

Fig. 5  Risk prediction model of stenosis. a The ensemble machine 
learning algorithm: This projects CYP1A1 m2, diabetes mellitus, 
TYMS 5′-UTR 28  bp tandem repeat, GSTT1, diet, alcohol intake, 

hypertension, MTRR A66G as the predictors of stenosis. b Correla-
tion between actual stenosis and predicted stenosis: machine learning 
algorithm explains 82.5% variability in stenosis



Molecular Biology Reports 

1 3

highlighting the role of folate pathway aberrations in CAD 
risk prediction.

The inverse association of regular exercise with percent-
age of stenosis is consistent with a recent study where in 
exercise-based cardiac rehabilitation improved the peak oxy-
gen intake with better quality of life [24].

The major strengths of the current study are application 
of three different risk prediction models i.e. EMLA, MDR 
and RP. The agreement between MDR and RP models in 
exploring interactions among variables made the associa-
tions more robust. The limitations of the current study were 
lack of data on HbA1c, C-reactive protein and micronutrient 
status of CAD patients. Further, the large studies are war-
ranted by incorporating these variables in the studied models 
to increase the precision in risk prediction.

Conclusion

EMLA model outperformed MDR and RP models in pre-
dicting CAD risk. MDR and RP models are in agreement in 
depicting age in decades, hypertension and cSHMT C1420T 
as the key determinants that modulate age of onset of CAD. 
In younger subjects, controlling the blood pressure and 
avoiding alcohol intake was shown to reduce the risk for 
CAD. The demographic, conventional and folate/xenobiotic 
genetic risk factors together was found to predict the CAD 
risk with 89.3% accuracy. However, their contribution in 
explaining variability of percentage stenosis was 82.5%.
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