Consider the following MMH case study then answer the questions to follow.

Examine the figure on the right. Note the following:

- one lift is performed every 4 hours (shift of 8 hours)
- there is a firm grasp on the water bottle
- feet remain fixed in place, and no twisting is involved
- **hint**: consider *the more dangerous* horizontal distance
- A. Determine components and multipliers

33 cm END 15 kg START 30 cm

of the lifting task (use the table below) [2 points]

	Component Value	Multiplier Value	
Н			
V			
D			
F			
A			
С			

B. What is the Recommended Weight Limit for the task? [1 pt]

C. Is the lifting task considered safe or dangerous? [1 pt]

Explain below.

D. If you answered "dangerous", what is the critical factor? [1 pt]

- E. If you answered "dangerous", you are now asked to redesign the lifting process by showing how you would account for the critical factor you mentioned above. You must:
 - a. Sketch the design of the new lifting process [3 pt]
 - b. Show steps and calculations to determine the new RWL value [1 pt]
 - c. Show whether the modified process is now safe or dangerous [1 pt]

Note, if "dangerous" you should repeat the process until it is safe.

Consider the following MMH case study then answer the questions to follow.

Examine the figure on the right. Note the following:

- one lift is performed every 4 hours (shift of 8 hours)
- there is a firm grasp on the water bottle
- feet remain fixed in place, and no twisting is involved
- **hint**: consider *the more dangerous* horizontal distance
- F. Determine the components and multipliers of the lifting points]

points]			$) \lambda $
	Component Value	Multiplier Value	
Н	<mark>63 cm</mark>	$\frac{25}{H} = \frac{25}{63} = 0.397$	→ → → →
V	15 cm	VM = 1 - (0.003) = $1 - 0.$	/ − 75) 003 15 − 75 = 0.82
D	125 cm	$DM = 0.82 + \left(\frac{4.5}{D}\right)$	$\left(\frac{5}{2}\right) = 0.82 + \frac{4.5}{125} = 0.856$
F	4 * 60 = 240 min	0.85 (directly from]	FM table @ 8hr; stooping)
Α	<mark>0°</mark>	AM = 1 - (0.0032)	A)= 1 - 0 = 1
С	good	1 (directly from CM	table; stooping)

33 cm

END

5 kg

G. What is the Recommended Weight Limit for the task? [1 pt]

H. Is the lifting task considered safe or dangerous? [1 pt]

dangerous

Explain below.

HM

weight of load (15 kg) > *RWL* (5.45 kg)

I. If you answered "dangerous", what is the critical factor? [1 pt]

the critical factor is most likely HM, the horizontal distance (H) of the water bottle from worker's body (since it has the smallest multiplier value, HM)

- J. If you answered "dangerous", you are now asked to redesign the lifting process by showing how you would account for the critical factor you mentioned above. You must:
 - a. Sketch the design of the new lifting process [3 pt]
 - b. Show steps and calculations to determine the new RWL value [1 pt]
 - c. Show whether the modified process is now safe or dangerous [1 pt]

Note, if "dangerous" you should repeat the process until it is safe.

15 cm

(i.e. shortening the *H* from 63 to the minimum 30 cm) \Rightarrow new $HM = \frac{25}{H} = \frac{25}{30} = 0.833$

Other important factors are VM and HM (since both are closely related) We redesign (as shown on the right) by placing a table such that $VM * DM \ge \frac{W}{LC * HM * FM} \ge \frac{15}{23 * 0.833 * 0.85} \ge 0.921$ i.e. it is possible to redesign by relying on changing only HM, VM and DM As shown, in order to maximize VM, a table is chosen with 60 cm height \Rightarrow $VM = 60 + 15 = 75 \ cm \Rightarrow VM = 1 - (0.003 | 75 - 75 |) = 1$ $DM = 140 - 75 = 65 \Rightarrow DM = 0.82 + \left(\frac{4.5}{65}\right) = 0.889$ However, note how VM * DM is still < the minimum (0.921) value The last factor that we can redesign is FM, which must be such that: 15 $FM \ge \frac{W}{LC * HM * VM * DM} \ge \frac{15}{23 * 0.833 * 1 * 0.889} \ge 0.88$ by using the FM table, we conclude that we need to boost FM from 0.85 to the next higher value of 0.95, at F = 5 min @ 2 hours, standing (since V = 75 cm), i.e. it is possible

to perform only 1 lift

In summary, to make the process safe, the task was redesigned as follows:

Component Value	Multiplier Value
------------------------	------------------

Н	<mark>30 cm</mark>	HM = 0.833
V	<mark>75 cm</mark>	VM = 1
D	<mark>65 cm</mark>	DM = 0.889
F	2 * 60 = 120 min	FM = 0.95
Α	<mark>0°</mark>	AM = 1
С	good	1 (directly from CM table; stooping)

b) Assessing the six components in the redesigned task:

$$RWL = 23 kg * [0.833 * 1 * 0.889 * 0.95 * 1 * 1]$$
$$\Rightarrow RWL = 16.1 kg$$

c) weight of load (15 kg) < RWL (16.1 kg)

 \Rightarrow most workers can perform the task safely

H = Horizontal Distance (cm)	HM Factor
25 or less	1.00
30	0.83
40	0.63
50	0.50
60	0.42
63	0.40
>63	0

V = Starting	VM Factor	A = Angle (°)	AM Factor	
neight (chi)		0	1.00	
0	0.78	30	0.90	_
30	0.87	45	0.86	_
50	0.93	60	0.81	
70	0.99	90	0.71	
80	0.99	105	0.66	
100	0.02	120	0.62	
100	0.93	135	0.57	_
150	0.78	>135	0	_
175	0.70	100	•	
>175	0			
175 >175	0.70			

D = Lifting Distance (cm)	DM Factor
25 or less	1.00
40	0.93
55	0.90
100	0.87
145	0.85
175	0.85
>175	0

C = Groop	CM Factor:		
C – Grasp	Standing	Stooping	
Good (handles)	1.00	1.00	
Fair	1.00	0.95	
Poor	0.90	0.90	

F=Time	FM Factor					
Between Lifts	Lifting While Standing (V ≥ 75 cm)		Lifting While Stooping (V < 75 cm)			
	≤ 1 hr.	>1 & ≤ 2 hr.	>2 & ≤ 8 hr.	≤ 1 hr.	>1 & ≤ 2 hr.	>2 & ≤ 8 hr.
≥5 min	1.00	0.95	0.85	1.00	0.95	0.85
2 min	0.97	0.92	0.81	0.97	0.92	0.81
1 min	0.94	0.88	0.75	0.94	0.88	0.75
30 sec	0.91	0.84	0.65	0.91	0.84	0.65
15 sec	0.84	0.72	0.45	0.84	0.72	0.45
10 sec	0.75	0.50	0.27	0.75	0.50	0.27
6 sec	0.45	0.26	0.13	0.45	0.26	0
5 sec	0.37	0.21	0	0.37	0	0

> Alternative formulae for multipliers:

- HM = [25/H]
- VM = [1 (0.003 | V 75|)] {note, $0 \le V [cm] \le 175 cm$ }
- DM = [0.82 + (4.5/D)]
- $\circ AM = [1 (0.0032A)]$

 $\{ note, 25 \le H \ [cm] \le 63 \ cm \} \\ \{ note, 0 \le V \ [cm] \le 175 \ cm \} \\ \{ note, 25 \le D \ [cm] \le 175 \ cm \}$

 $\{note,\,0^\circ \leq A \leq \!\!135^\circ\}$