King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Midterm Exam II Physics (PHYS 111) 1437/1438

Name	
Student's ID	
Signature	

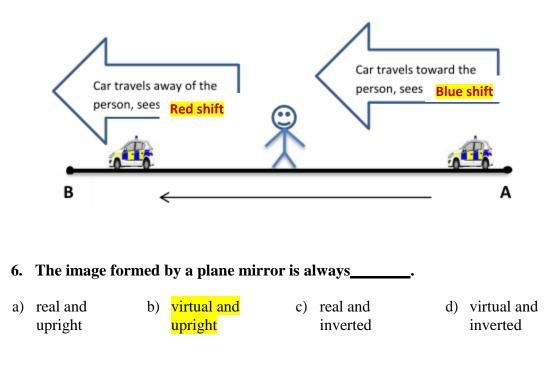
Instructions

- 1. Please print your name and ID number clearly on the page.
- 2. Problem will be graded on reasoning and intermediate steps as well as on the final answer.
- 3. Each question is worth 1 point.
- 4. Try to be neat! Check your answers to see that they are the right order of magnitude.
- 5. You are allowed using a calculator.
- 6. The constants and formula are on the sheet of exam (page 2).
- 7. The exam lasts exactly 90 minutes.

Useful Formula and Constants

$f = (1/2) \mathbf{R}$	$d \sin \theta = m\lambda$	ybright= $(\lambda L/d)$ m
$d\sin\theta = (m+\frac{1}{2})\lambda$	$ydark=(\lambda L/d) (m+1/2)$	$p = \hbar k = \frac{h\nu}{c} = \frac{h}{\lambda}.$
$2nt=(m+1/2)\lambda$	$2nt=m\lambda$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
$E = hf = hc/\lambda$	$\lambda = c/f$	$\sin\theta_c = n_2/n_1$
$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$		n = c/v

 $C = 3 \times 10^8 \text{ m/s}$ h= 6.63x10⁻³⁴ J.s


$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

 $n_{air} = 1$
 $n_{water} = 1.33$

<u>Ouestions (1)</u>: Please choose the **ONE** correct answer.

1. Einstein purposed that light :

na	has a particle-like ture by explaining e photoelectric effect	b) has a wave-like nature by explaining the interference phenomenon	c) consists of sma parts called photons	ll d)energy connected with the frequency
2.	The color of visible	light that has the lowest e	energy is	
	a) Red	b) Yellow	c) Violet	d) Blue
3.		632 nm wavelength is b) 1.05 × 10 ⁻²⁷ J.s/m	c) 10 ⁻²⁸ J.s/m	d) 22×10 ⁻²⁷ J.s/m
4.	The energy of light a) 3.56×10 ⁻¹⁷ J	that has a frequency of 5 b) 500×10 ⁻¹⁷ J		d) 7.66×10 ⁻¹⁷ J

5. The observed wavelength of any wave depends on the relative motion of the light source and the receiver of the light. Suppose there is a police car travels from A to B. Determine the type of light shift that observed by a person in the middle of the way.

7. Wh	en light is ind	cident on a smooth	shiny surface	reflection tal	xes place.
a) <mark>spec</mark>	cular	b) irregular	c) diffused	d) nor	mal
	8. When light travels from a medium which has high refracted index to a medium of low refracted index, the speed of light				
a) incr	ease	b) decrease	c) does	not change d) s t	o p
9. The	magnificatio	on equation of mir	rors and lens as	the relation betw	een
	bject height s image heigh		istance c) the foo tance and the	cal length d) a an curvature	nd b
10. The	angle of inci	idence at a plane r	nirror is 60°. The	e angle of reflection	on is
a) 12.5	5°	<mark>b) 60°</mark>	c) 30°	d) 159	
11. The	e radius of a c	concave mirror is	15 cm. What is it	s focal length?	
a) 15 c	cm	b) 30 cm	c) 7.5 ci	<mark>n</mark> d) 4:	5 cm
12. A concave mirror used to have an image 3 times larger than the object. Where will be the image created when the object distance at 20 cm?					
a) -20 c the mi	m behind rror	b) 20 cm in fro of the mirror	nt <mark>c) -60 cı</mark> the mi		50 cm in front the mirror
13. A c	13. A concave lens is called				
a) con lens	verging	b) <mark>diverging</mark> <mark>lens</mark>	c) refrac lens	ar	oth converging nd diverging ns
14. An object is placed 10 cm from a convex lens whose focal length is 8 cm. The image distance is					
a) 50 c	em	b) 60 cm	c) 40 cm	n d) 10) cm
15. A converging lens could form					
a) vrtua image	,	c) virtu rea	al and l images	d) perfect image	

16. What is the refractive index of the glass when the speed of light in a certain glass is 1.91×10^8 m/s.

a) 1.57 b) 0.64 c) 1.09 d) 4.9

17. The critical angle for light passing from a block of quartz into air is 43.24°. Calculate the index of refraction of the block of quartz where the refraction index for air is 1.

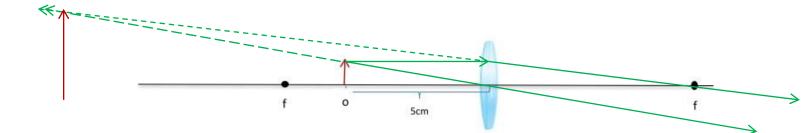
a) 1 b) 0.65 c) 0.025 d) 1.46

18. Interference of light was firstly demonstrated by------, and he used double slits barrier to produce -----.

a) Max Planck	b) Einstein	c) De Broglie	<mark>d) Thomas Young</mark>
a) Monochromatic sources	b) coherent sources	c) polarized sources	d) a and b

19. Light of wavelength 500 nm falls on a double-slit spaced 0.05 mm apart. Determine the position of the second order bright fringe (m=2) from the center of a screen placed at 2 m?

\ _	1) 0.004	> 0.01	1	0.04
a) 5 m	b) 0.004 m	c) 0.01 m	a)	0.04 m


20. A double-slit source is 0.02 mm a part produces an interference pattern on a screen. What is the wavelength of the first-order dark fringe (m=1) seen at an angle of 10 degree.

a) 0.26 μm b) 50 μm c) 2.3 μm	d) 0.77 μm
-------------------------------	------------

<u>Ouestion (2):</u>

A 2 cm height object is placed 5 cm from a convex lens whose focal length is 7 cm.

- a) Sketch the ray diagram.
- b) Find the location of the image and its size.
- c) Calculate the lens magnification
- d) Determine the characteristics of the image.

b) $1/f = 1/d_0 + 1/d_i$ $1/7 = 1/5 + 1/d_i$, $1/d_i = 1/7 - 1/5 = -2/35$, $d_i = -17.5$ cm then the image created in front of the lens

 $H_i/h_o = -d_i/d_o$, $h_i = h_o (-d_i/d_o)$, $h_i = (2) (-(-17.5)/(5) = 7 \text{ cm})$

c) M = - $d_i/d_o = -(-17.5)/(5) = +3.5$

d) the image is upright (since M is positive), then virtual, and larger (since M is greater than 1)