King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352

Section 1, CRN: 48703/4/5
Section 2, CRN: 48706/7/8
First Semester 1436-37 H (Fall-2015) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Wednesday, Oct. 14, 2015 (01/01/1437H)
MIDTERM 1 [10 POINTS]

Name:	Student Number:	Section:
	4	Darwish / Sherb.

Place the correct letter in the box at the right of each question [0.5 Pt. Each]

1. The figure below displays what type of manufacturing process/operation?
A. surface processing operation
B. permanent joining, assembly operation
C. shaping, material removal process
D. mechanical fastening operation
E. heat treatment, property enhancing process
2. The building blocks of modern manufacturing are ...

A. people, materials, processes, and products
B. people, equipment, machines, and systems
C. people, materials, machines, and products
D. people, equipment, processes, and systems
E. people, materials, processes, and systems
3. The maximum quantity produced in a given time period in a plant is called.

A. physical product limitations
B. production capacity
C. technological processing capability
D. production quantity
E. manufacturing industry

King Saud University - College of Engineering - Industrial Engineering Dept.
4. A material that consists of a rigid, structure that cannot be reheated is

A. thermosetting polymers
B. elastomers
C. thermoplastic polymers
D. crystalline ceramics
E. nonferrous metals
5. In the following processes, the starting material is a ductile or brittle solid: \square
A. surface processing operations
B. deformation processes
C. particulate processing
D. solidification processes
E. material removal processes
6. The devices shown below are all examples of a(n) ...
A. micrometer depth gage
B. Vernier height gage
C. inside Vernier gage
D. inside micrometer gage
E. micrometer height gage
7. A dial caliper...

A. looks similar to a Vernier micrometer
B. is used to provide angular measurements using a Vernier scale
C. is used to provide direct readings of linear measurements
D. is used to provide direct readings of angular measurements
E. is used to provide angular measurements using a degree-minute system
8. The figure below shows an example of a ... gage.
A. dial indicator snap gage
B. ring gage
C. plug gage
D. non-adjustable snap gage
E. thread gage
9. The correct reading in the ... shown below is ...

A. inside micrometer; 0.5050 in
B. outside micrometer; 0.5050 in
C. inside micrometer; 0.505 in
D. outside micrometer; 0.505 in
E. inside micrometer; 0.550 in

10. The correct reading in the ... shown below is ...
A. Vernier caliper; 4.435 mm
B. Vernier micometer; 44.35 mm
C. Vernier caliper; 44.35 in
D. Vernier caliper; 44.70 mm
E. Vernier caliper; 44.35 mm

11. The correct reading in the ... shown below is ...
A. vernier caliper; $0 . \frac{115}{128}$ in
B. vernier caliper; 1. $\frac{1}{16}$ in
C. dial caliper; $0 . \frac{115}{128}$ in
D. dial caliper; 1. $\frac{1}{16}$ in
E. dial caliper; 1. $\frac{3}{128}$ in

12. The correct reading in the ... shown below is ...

\square
A. Vernier caliper; $2 . \frac{63}{128}$ in
B. Dial caliper; 2. $\frac{119}{128}$ in
C. Dial caliper; 2. $\frac{63}{128}$ in
D. Universal Bevel Protractor; 2. $\frac{63}{128}$ in
E. Vernier micrometer; 2. $\frac{119}{128}$ in

13. The correct reading in the ... shown below is ... \square
A. outside micrometer; 9.91 mm
B. outside micrometer; 9.89 mm
C. inside micrometer; 9.91 mm
D. inside micrometer; 9.89 mm
E. inside micrometer; 16.41 mm

Questions 14-16. Consider a $15^{\prime \prime}$ nominal diameter, RC7 fit between a shaft and hole.
14. Respectively, shaft ${ }_{M M C}=$; shaft $t_{L M C}=. .$. \square
A. 15.006 in; 15.000 in
B. $14.987 \mathrm{in} ; 14.990 \mathrm{in}$
C. $15.000 \mathrm{in} ; 15.006$ in
D. $14.990 \mathrm{in} ; 14.987 \mathrm{in}$
E. 14.990 in; 15.006 in
15. Respectively, hole $_{M M C}=$; hole $_{L M C}=. .$. \square
A. 15.006 in; 15.000 in
B. $15.000 \mathrm{in} ; 15.006 \mathrm{in}$
C. 14.987 in; 14.990 in
D. 14.990 in; 14.987 in
E. 14.990 in ; 15.006 in
16. Respectively, min. clearance $=$; max. clearance $=$...
A. $0 \mathrm{in} ; 0.020 \mathrm{in}$
B. 0.008 in ; 0.016 in
C. $0 \mathrm{in} ; 0.006$ in
D. $0.010 \mathrm{in} ; 0.020 \mathrm{in}$
E. $0.020 \mathrm{in} ; 0.010 \mathrm{in}$

Questions 17-20. Consider a 20 mm nominal diameter, $N 7 / \mathrm{h} 6$ fit.
17. Respectively, shaft $t_{M M C}=$; shaft $t_{L M C}=. .$.

A. $20.000 \mathrm{~mm} ; 19.987 \mathrm{~mm}$
B. $19.987 \mathrm{~mm} ; 20.000 \mathrm{~mm}$
C. 20.000 mm ; 19.993 mm
D. $19.993 \mathrm{~mm} ; 19.972 \mathrm{~mm}$
E. 19.972 mm ; 19.993 mm
18. Respectively, hole $_{M M C}=$; hole $_{L M C}=$... \square
A. $20.000 \mathrm{~mm} ; 19.987 \mathrm{~mm}$
B. $19.987 \mathrm{~mm} ; 20.000 \mathrm{~mm}$
C. 20.000 mm ; 19.993 mm
D. $19.993 \mathrm{~mm} ; 19.972 \mathrm{~mm}$
E. 19.972 mm ; 19.993 mm
19. Respectively, max. clearance $=$; max. interference $=$...
A. $0 ; 0.028 \mathrm{~mm}$
B. $0 ; 0$
C. 0.006 mm ; 0.028 mm
D. 0.028 mm ; 0.006 mm
E. 0; 0.006 mm
20. Respectively, min.clearance $=$; min. interference $=$...

A. $0 ; 0.028 \mathrm{~mm}$
B. $0 ; 0$
C. 0.006 mm ; 0.028 mm
D. $0.028 \mathrm{~mm} ; 0.006 \mathrm{~mm}$
E. 0; 0.006 mm

SGコNVYGTOL đNV SGコNVMOTTV

z	$\begin{gathered} c \\ 3 \\ 3 \\ \hline \end{gathered}$			$\begin{gathered} c \\ \vdots \\ \vdots \\ \vdots \end{gathered}$			$\left\|\begin{array}{cc} & 4 \\ 3 & \\ 3 & 3 \\ 3 & 2 \end{array}\right\|$	$\left\|\right\|$	$\left\|\begin{array}{cc} \omega \\ \vdots & \\ \vdots & \\ \vdots \end{array}\right\|$		$\left\lvert\, \begin{gathered} \sim \\ 3 \\ 3 \end{gathered}\right.$		$\left.\left\lvert\, \begin{array}{c} 3 \\ \vdots \\ \vdots \\ \vdots \end{array}\right.\right]$	$\left\lvert\, \begin{array}{rr} - \\ 3 & \left.\begin{array}{r} -2 \\ \underset{x}{2} \end{array} \right\rvert\, \end{array}\right.$	$\underset{\sim}{\mathbb{O}}$	
				$\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$			$\left\|\begin{array}{ll} n & 1 \\ 0 & 0 \\ 8 & 0 \\ 0 & 0 \\ \sim & \omega \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$							彦
$$				$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ 0 & \\ 0 & 0 \\ 0 & 0 \\ =0 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$		$\left\|\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$										
		$\begin{array}{lll} 620^{\circ} 0^{-} & 686^{\circ} \mathrm{SI} & I \angle 6^{\circ} \mathrm{CI} \\ 000^{\circ} & 000^{\circ} 9 \mathrm{I} & 686^{\circ} \mathrm{SI} \\ \hline \end{array}$		$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ - & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		$\left\|\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$		$\left\|\begin{array}{cc} \omega & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \omega & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ \vdots & 0 \\ 0 & 0 \\ 0 & 8 \end{array}\right\|$	$\left\|\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \omega \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$							¢
		$\left\|\begin{array}{cc} 0 & 0 \\ -6 & 0 \\ - & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0.0 & 0 \end{array}\right\|$				$\begin{array}{cc}c & 9 \\ 0 & 0 \\ \omega & 0 \\ 0 \\ 0 & \\ 0 & 0 \\ 0 & 8 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$		$\left\|\begin{array}{cc} \omega & \omega \\ 0 & 0 \\ \omega & 0 \\ \omega & 0 \\ 1 \\ \omega & 0 \\ 0 & 0 \\ 0 & 8 \\ 0 & 8 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$						$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ o \end{array}$		z
$\begin{array}{lll} 190^{\circ} 0^{-} & \angle 86^{\circ} \downarrow 2 & 686^{\prime} \downarrow 2 \\ 120^{\circ} & 000^{\circ} \mathrm{c}- & 096^{\circ} \downarrow 2 \\ \hline \end{array}$	$\left.\begin{array}{ll} \hline & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 \end{array} \right\rvert\,$				7 7 0 	$\left\|\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \vdots & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$		$\left\|\begin{array}{cc} \omega & \omega \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \omega & \\ \omega & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ \vdots & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{ccc} n & 0 \\ 0 & 0 \\ & 0 \\ 0 \end{array}\right\|$							\% ${ }^{5}$

