Mid-term 2 Exam: CSC 281

Instructor: Dr. Abdelouahid Derhab

Student Name:

Student Number:

Exercise 1

Use the Rules of Inference to show the following is a valid argument:

$$p \to q$$

$$\neg r \to \neg q$$

$$r \to (s \land u)$$

$$p$$

$$\dots$$

$$\vdots s$$

Exercise 2

Prove using induction the following formula for all $n\in\mathbb{N}^*$

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} = \frac{n}{n+1}$$

Exercise 3

Find f(1), f(2), f(3), and f(4) if f is defined recursively by:

$$f(n+1) = 5f(n) + 2$$
 with $f(0) = 1$

Exercise 4

Give a recursive definition of the sequence $\{a_n\}$, $n=1,2,\ldots,n$ by writing a_{n+1} as a function of a_n .

- $\bullet \ a_n = 4n 2$
- $a_n = 1 + (-1)^n$
- $\bullet \ a_n = n(n+1)$
- $a_n = n^2$

Exercise 5: Let $f: \mathbb{R} \to \mathbb{R}$ be the absolute value function f(x) = |x|, and E be the relation on \mathbb{R} : $E = \{(x,y)|x,y \in \mathbb{R} \text{ and } |x| = |y|\}$. Show that E is an Equivalence Relation (reflexive, symmetric, and transitive).