Mid-term 2 Exam: CSC 281

Instructor: Dr. Abdelouahid Derhab

Student Name:

Student Number:

Exercise 1

Use the Rules of Inference to show the following is a valid argument:

$$
\begin{array}{r}
p \rightarrow q \\
\neg r \rightarrow \neg q \\
r \rightarrow(s \wedge u) \\
p \\
\cdots \cdots \cdots \cdots \cdots
\end{array}
$$

Exercise 2

Prove using induction the following formula for all $n \in \mathbb{N}^{*}$

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\cdots+\frac{1}{n \times(n+1)}=\frac{n}{n+1}
$$

Exercise 3

Find $f(1), f(2), f(3)$, and $f(4)$ if f is defined recursively by:

$$
f(n+1)=5 f(n)+2 \text { with } f(0)=1
$$

Exercise 4

Give a recursive definition of the sequence $\left\{a_{n}\right\}, n=1,2, \ldots, n$ by writing a_{n+1} as a function of a_{n}.

- $a_{n}=4 n-2$
- $a_{n}=1+(-1)^{n}$
- $a_{n}=n(n+1)$
- $a_{n}=n^{2}$

Exercise 5: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the absolute value function $f(x)=|x|$, and E be the relation on $\mathbb{R}: E=\{(x, y) \mid x, y \in \mathbb{R}$ and $|x|=|y|\}$. Show that E is an Equivalence Relation (reflexive, symmetric, and transitive).

