		Q#1	Q#2	Q#3	Total Marks	
	Sant Barrier Stranger					
King Saud University						EE208: Logic Design
College of Engineering						Mid Term Exam: Part#1
Electrical Engineering Department						Time allowed: 90 Min
Student name:		e e e e e e e e e e e e e e e e e e e	Student II) :		lst Semester 1428H-1429H

Question 1:

a) Convert $-(100001100100.0101011)_{BCD}$ to its equivalent binary code

- (9875)₃₂ to its equivalent binary code without calculator (**Bonus**)
- b) Perform the following operations using 8-bit signed binary numbers and detect the overflow or underflow cases? (*hint*: use 2's complement for negative numbers) 123 - 65 =?

c) Write the equivalent product of sums POS for the following function

 $F(x, y, z) = \overline{x}y + yz + xz$

Answer to question 1:

Question 2:

a) Simplify the following function using K-map and draw the circuit using NAND gates only F(A,B,C,D) = ∑m(0,2,4,8,10) + ∑d(3,5,7,12,14)
b) Implement the above function in part (a) using only NOR gates.

Answer to question 2:

Question 3:

Given the logic function $F(x, y, z, w) = \sum m(0, 5, 10, 15)$

- a) Write the truth table
- b) Derive the logic function
- c) Simplify the logic function using Boolean algebrad) Draw the circuit using minimal number of gates

Answer to question 3: