College of Sciences Department of Physics and Astronomy

كلية العلوم قسم الفيزياء والفلك

Second Midterm Exam

Tuesday, November 20/2018	PHYS 109	Academic year 2017-2018
8:15 – 9:45 am	General Physics	First Semester

Student's Name		اسم الطالبة	
ID number		الرقم الجامعي	
Section No.	54601	رقم الشعبة	
Classroom No.	2C09	رقم قاعة الاختبار	15
Teacher's Name	أ. نوف سعد الخضران	اسم أستاذة المقرر	
Roll Number		رقم التحضير	

Instructions:

- Switch off your mobile and place it under your seat.
- Please do not forget to write your name in this page.
- Write the answers at the right of each question.

Assume:

$\rho_{water} = 1000 \text{ kg/m}^3$,	$\epsilon_0 = 8.85 \times 10^{-12} \ C^2/N.m^2$
$P_{atm} = 1.013 \times 10^5 Pa$,	$e = -1.6 \times 10^{-19} C,$
$k = 9x10^{9m} N.m^2/C^2$	

No.	Question					Answer	
	A 60 kg man runs up a flight of stairs 4 m in 5 s. The average power output is:						
1	A) 270 W	B) 470 W	C) 320	W	D) 370 W	E) 410 W	В
2		B.0 kg pulled at con ergy of the cart at the B) 220 J		ight is:	an inclined plan D) 320 J	E) 350 J	С
3	-	berature, a balloon of duced to 2 atm, the B) 1.2 m^3		will occu		Difference of 7 atm. If E) 60.1 L	С
4	Which of the following statements is false?A) An ideal gas is one that completely obeys the gas lawsB) The universal gas constant R has units of J/(mol. K)C) The volume of a gas increases when the temperature increases at constant pressureD) The volume of a gas decreases when the pressure increases at constant temperatureE) Boyle's law applies at constant pressure.					Е	
5	An object is thrown into seawater. If the weight of the object is larger than weight of displaced water, the objectA) sinksB) floats at the surfaceC) floats at specific depthD) sinks and then floatsE) floats and then sinks					Α	
6	A ball has a 2 cn A) 20 N	n radius submerged B) 6.5 N	-	. The buo		E) 0.33 N	Е
7	A big closed water tank has a constant pressure of 2 atm at its top. A small hole is made at a distance of 4 m below the water tank level. The velocity (in m.s-1) of the water through the hole is :(neglect velocity of water at the top level, and the pressure at the hole) $P_1=2 \text{ atm}, v_1=0$ $P_2=0, v_2=?$					В	
	A) 16.7	B) 22.0	C) 11.1		D) 38.7	E) 275.5	
8	A liquid flows through a pipe with a radius of 5 cm at a velocity of 9 cm/s. If the radius of the pipe then decreases to 3 cm, the new velocity of the liquid is:A) 21 cm/sB) 25 cm/sC) 12 cm/sD) 18 cm/sE) 15 cm/s					В	
9	Two positive cha		C and $q_2=$	= 5 × 10 ⁻⁶	C are placed at	6 m apart on x-axis,	D

10	double both char	ges attract each o rges and double th t charges becomes B) $\frac{1}{2} F_{el}$	e distance betw		, the magni		D
11	A charge of -1.0 μ C is located on the y-axis 1.0 m from the origin while a second charge of +1.0 μ C is located on the x-axis 1.0 m from the origin. (Assuming V = 0 at infinity), the electric potential at the origin is: A) 2 V						С
	 B) 1 V C) zero D) -3 V E) -6 V 						
12	A parallel plate capacitor has a plate area of 5.0 cm² and plate separation of 1.0 mm is filled with a paper whose dielectric constant k= 3.5. The capacitance of this capacitor in pF is:A) 8.2B) 11.7C) 15.5D) 7.5E) 4.7						С
13	A parallel plate capacitor connected to a 16.0 V battery. If the magnitude of charge on the capacitor plates is 4 μ C, the energy stored in the capacitor in J is:A) 3.2×10^{-5} B) 61×10^{-6} C) 53×10^{-6} D) 28×10^{-5} E) 1.5×10^{-5}						A
14	 A) q₁ and q₂ are positive B) q₁ is negative and q₂ is positive C) q₁ is positive and q₂ is negative 					В	
15	D) q ₁ and q ₂ are negative E) need more information to determine The point that has greater pressure is:					E	
13	A) A	B) B	C) C	D) D	<u> </u>	E) All the same	