College of Sciences Department of Physics and Astronomy

كلية العلوم قسم الفيزياء والفلك

First Midterm Exam

Wednesday, Safar 8, 1440	PHYS 109	Academic year 1439-40 H		
8:15 – 9:45 am	General Physics	First Semester		

Student's Name	اسم الطالبة	
ID number	الرقم الجامعي	
Section No.	رقم الشعبة	
Classroom No.	رقم قاعة الاختبار	15
Teacher's Name	اسم أستاذة المقرر	
Roll Number	رقم التحضير	

Instructions:

- Switch off your mobile and place it under your seat.
- Please do not forget to write your name in this page.
- Write the answers at the right of each question.

Assume:

 $\begin{array}{l} g = 9.8 \ m.s^{-2} \\ G = 6.673 \times 10^{-11} Nm^2 / kg^2 \end{array}$

No.	Question					Answer
1	An object with an initial velocity of 12 m/s accelerates at a rate of 1.32 m/s^2 . The final velocity of this object after 25 seconds is :					В
	A) 10 m/s	B) 45 m/s	C) 22 m/s	D) 25 m/s	E) 30 m/s	
	If we ignore air resistance, we usually say that the horizontal component of acceleration of a projectile is:					
2	A) variable	B) equal to the vertical component of acceleration	C) 0	D) constant	E) not of the above	С
	A ball is thrown from the origin at an angle of 40° to the horizontal with an initial speed of 8.5 m/s. The <i>x</i> and <i>y</i> components of the ball's position 2.0 second later are:					
	A) 10.6 m/s, 5.6 m	n/s				
3	B) 13 m/s, -8.7 m/	's				В
	C) 32.6 m/s, 27.3	m/s				
	D) 42.5 m/s, -42.5	5m/s				
	E) 17 m/s. 17m/s	8				
	What is the average	age velocity from 3	0 to 40 seconds?	position (m)		-
	A) - 4 m/s			80 60		
4	B) -30 m/s C) -40 m/s			40		Α
	D) 10 m/s					
	E) 4 m/s			-20 -40 10 20	30 40 50 time (sec)	
	Which one of the	e following quantiti	ies is a scalar?			
5	A)displacement	B) velocity	C) acceleration	D) force	E) speed	E
		d to 4 kg box whic	h make 10 m/s cha	ange in the velocit	y of the box in 5	
6	s. The applied fo	orce is equal to:				С
	A) 50 N	B) 40 N	C) 8 N	D) 5 N	E) 3 N	-
		of gravity on the s		3.62 m/s^2 , and the	mass of Mars is	
7	6.40×10^{23} kg. Th	ne radius of Mars is	:			Α
	A) 3.43 Mm	B) 3.43 µm	C) 3.43 mm	D) 3.43 km	E) 3.43 m	-
	A 6 kg box is res	sting on an inclined	surface 30° above	e the horizontal. I	f the coefficient of	
8		the surface is 0.55,				С
	A) 39.4 N	B) 58.8 N	C) 28.0 N	D) 33.3 N	E) 50.3 N	
	Suppose that a box is accelerating at 3 m/s^2 . If the net force acting on it is doubled and its mass is halved, then the new acceleration of the box is:					
	A) 5 m/s^2					D
9	B) 4 m/s^2 C) 20 m/s ²					2
	D) 12 m/s^2					
	E) 0 m/s^2					

10	Two masses $m_1 = 2.00$ kg and $m_2 = 3.00$ kg are connected by a light cord and hung from a frictionless pulley of negligible mass as shown. The acceleration of the two masses in m/s ² is approximately:				В		
11	A) 0.16B) 1.96C) 2.50D) 3.50E) 4.40The x and y coordinate in meter of three particles system of respective masses $m_1=4$ kg $m_2=5$ kg, and $m_3=6$ kg are shown in the figure, the center of mass of the system are: $y^{(m)}$ 4 $m_2=5$ 2 $m_3=6$ kg are $m_3=6$ kg are $m_1=4$ $m_2=5$ $m_2=5$ $m_3=6$ <					D	
	A) $x=1.25$ m, y B) $x = 1.0$ m, $y =$ C) $x = 0.5$ m, $y =$ D) $x = 1.4$ m, $y =$ E) $x = 1.0$ m, $y =$	0.5 m 0.5 m = 1.9 m					
12	kg hockey puck	slapped at him at a	ally at rest, catches a velocity of 35.0 m palie and puck in m/ C) 24.5 ×10 ⁻²	/s. The s is:		<u>etoriess ice surface</u> E) 105.5 ×10 ⁻²	В
13	2.0 meter lev	er, the magnitude	30 degrees at the er of the torque in N.m	ı is:		2 meters 30 degrees	С
14			C) 3 5 m/s on a circle o respect to the cente		has an ai		С

	The statement that does not correctly describe an object in translational equilibrium is:	
15	 A) the net forces acting on the object equals zero B) it is experiencing zero overall acceleration C) it is moving at a constant velocity D) The net force acting on the object is constant E) none of the above 	D