King Saud University Department of Mathematics

Final Exam

$1^{\text {st }}$ semester 1437 H
Course Title: Math 244 (Linear Algebra)
Date: Tuesday 8 December 2015; (3-4:45) pm
(......) Name
ID
Section

Lecturer \qquad

Question	Grade
Q1	
Q2	
Q3	
Q4	
Total	

Part I	(a)	(b)	(c)	(d)	(e)	(f)
Answer						

Question 1

I. Choose the correct answer (write it down on the table above):
(a) (2) If $u=\left(2, \frac{1}{2}, 1,1\right), v=(0,2,1,-2)$ and $w=(1,4,2,-2)$ then $\|-2 u\|+\|v\|$ and $\left\|\frac{1}{\|w\|} w\right\|$ are respectively
(i) -4 and $3 \sqrt{2}$
(ii) -4 and 1
(iii) 8 and 1
(iv) None.
(b) The angle θ between $u=(-4,0,2,-2)$ and $v=(2,0,-1,1)$ is
(i) 0
(ii) $\frac{\pi}{2}$
(iii) π
(iv) None.
(c) If A, B and C are 2×2 matrices with $\operatorname{det}(A)=2$, $\operatorname{det}(B)=-1$ and $\operatorname{det}(C)=5$ then $\operatorname{det}\left(A^{-1} B^{T} C^{2}\right)$ equals
(i) $-\frac{25}{2}$
(ii) 50
(iii) -5
(iv) None
(d) The solution space of $\left[\begin{array}{ccc}1 & -2 & 6 \\ 3 & -6 & 18 \\ -7 & 14 & -42\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(i) A line through the origin
(ii) The origin
(iii) A plane through the origin
(iv) None
(e) The cofactor C_{33} of the matrix $A=\left[\begin{array}{llll}3 & 3 & 5 & 1 \\ 2 & 2 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$ is
(i) -2
(ii) 2
(iii) 0
(iv) None
(f) If $\vec{u}=(2,-2) ; \vec{v}=(5,8)$ and $\vec{w}=(-4,3)$, then $(\vec{u} \cdot \vec{v}) \vec{w}$ equals
(i) $(-24,18)$
(ii) 6
(iii) $(24,-18)$
(iv) None
II. Determine wether the following is true or false.
(a) If \vec{u} and \vec{v} are orthogonal vectors then for all nonzero scalars k_{1} and $k_{2}, k_{1} \vec{u}$ and $k_{2} \vec{v}$ are orthogonal vectors.
(b) If $C=\left[c_{i j}\right]_{3 \times 3}$ and D is obtained fro C by adding 3 times the second row to each of the first and third rows, then $\operatorname{det}(D)=9 \operatorname{det}(C)$
(c) The set $W=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: x_{1} \geq 0\right.$ and $\left.x_{2} \geq 0\right\}$ with the standard operations is a subspace of R^{2}
(d) $S=\{(-2,0,1),(4,-2,0),(6,-6,3)\}$ is linearly dependent set in R^{3}
(e) $S=\{(2,-1,2),(4,1,3),(2,2,1)\}$ spans R^{3}
(f) The subspaces of R^{2} are $\{\overrightarrow{0}\}$ and R^{2} itself

Question 2

(i) Determine if the set $W=\{(x, y): x, y \in R\}$ with the operations

$$
(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right)
$$

and

$$
k(x, y)=(k x, k y)
$$

form a vector space or not. Justify your answer.
(ii) Determine the value of a such that the matrices

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & -4 \\
a & -2
\end{array}\right]
$$

are linearly independent

Question 3

(a) Determine all the vectors $\vec{v}=\left(v_{1}, v_{2}\right)$ in R^{2} that are orthogonal to $\vec{u}=(4,2)$
(b) Prove that $W=\left\{A \in M_{2 \times 2}(R): A=A^{T}\right\}$ is a subspace of $M_{2 \times 2}(R)$.
(c) Given $\vec{u} \cdot \vec{u}=39, \vec{u} \cdot \vec{v}=-3$ and $\vec{v} \cdot \vec{v}=79$. Find $(\vec{u}+2 \vec{v}) \cdot(3 \vec{u}+\vec{v})$.

Question 4

(a) Determine the determinant of

$$
A=\left[\begin{array}{cccc}
1 & -2 & 3 & 1 \\
5 & -9 & 6 & 3 \\
-1 & 2 & -6 & -2 \\
2 & 8 & 6 & 1
\end{array}\right]
$$

(b) Prove that for any $\vec{u}, \vec{v} \in V$,

$$
\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\|\vec{u}\|^{2}+2\|\vec{v}\|^{2} .
$$

(c) Use the adjoint of $A=\left[\begin{array}{ccc}1 & -5 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$ to find A^{-1}.

