King Saud University Department of Mathematics

Final Exam

 1^{st} semester 1437 H

Course Title: Math 244 (Linear Algebra)

Date: Tuesday 8 December 2015; (3-4:45) pm

Lecturer

Question	Grade
O1	
Q2	
Q3	
Q4	
Total	

Part I	(a)	(b)	(c)	(d)	(e)	(f)
Answer						

- I. Choose the correct answer (write it down on the table above):
 - (a) (2) If $u = (2, \frac{1}{2}, 1, 1)$, v = (0, 2, 1, -2) and w = (1, 4, 2, -2) then ||-2u|| + ||v||and $\left\|\frac{1}{\|w\|}w\right\|$ are respectively
 - (i) -4 and $3\sqrt{2}$
 - (ii) -4 and 1
 - (iii) 8 and 1
 - (iv) None.
 - (b) The angle θ between u = (-4, 0, 2, -2) and v = (2, 0, -1, 1) is
 - (i) 0
 - (ii) $\frac{\pi}{2}$
 - (iii) π
 - (iv) None.
 - (c) If A, B and C are 2×2 matrices with $\det(A) = 2$, $\det(B) = -1$ and $\det(C) = 5$ then $\det(A^{-1}B^TC^2)$ equals
 - (i) $-\frac{25}{2}$
 - (ii) 50
 - (iii) -5
 - (iv) None

(d) The solution space of $\begin{bmatrix} 1 & -2 & 6 \\ 3 & -6 & 18 \\ -7 & 14 & -42 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

- (i) A line through the origin
- (ii) The origin
- (iii) A plane through the origin
- (iv) None

(e) The cofactor C_{33} of the matrix $A = \begin{bmatrix} 3 & 3 & 5 & 1 \\ 2 & 2 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$ is (i) -2 (ii) 2 (iii) 0 (iv) None (f) If $\vec{u} = (2, -2)$; $\vec{v} = (5, 8)$ and $\vec{w} = (-4, 3)$, then $(\vec{u} \cdot \vec{v})\vec{w}$ equals (i) (-24, 18) (ii) 6 (iii) (24, -18) (iv) None

II. Determine wether the following is true or false.

- (a) If \vec{u} and \vec{v} are orthogonal vectors then for all nonzero scalars k_1 and k_2 , $k_1\vec{u}$ and $k_2\vec{v}$ are orthogonal vectors. []
- (b) If $C = [c_{ij}]_{3\times 3}$ and D is obtained fro C by adding 3 times the second row to each of the first and third rows, then $\det(D) = 9 \det(C)$ []
- (c) The set $W = \{(x_1, x_2) \in R^2 : x_1 \ge 0 \text{ and } x_2 \ge 0\}$ with the standard operations is a subspace of R^2 []
- (d) $S = \{(-2, 0, 1), (4, -2, 0), (6, -6, 3)\}$ is linearly dependent set in \mathbb{R}^3 [
- (e) $S = \{(2, -1, 2), (4, 1, 3), (2, 2, 1)\}$ spans \mathbb{R}^3 []
- (f) The subspaces of R^2 are $\{\vec{0}\}$ and R^2 itself []

(i) Determine if the set $W = \{(x, y) : x, y \in R\}$ with the operations

$$(x, y) + (x', y') = (xx', yy')$$

and

$$k(x,y) = (kx,ky)$$

form a vector space or not. Justify your answer.

(ii) Determine the value of a such that the matrices

[1	2		[1	0]		[1	-4
0	1	,	1	0	,	$\lfloor a$	-2

are linearly independent

(a) Determine all the vectors $\vec{v} = (v_1, v_2)$ in R^2 that are orthogonal to $\vec{u} = (4, 2)$

(b) Prove that $W = \{A \in M_{2 \times 2}(R) : A = A^T\}$ is a subspace of $M_{2 \times 2}(R)$.

(c) Given $\vec{u} \cdot \vec{u} = 39$, $\vec{u} \cdot \vec{v} = -3$ and $\vec{v} \cdot \vec{v} = 79$. Find $(\vec{u} + 2\vec{v}) \cdot (3\vec{u} + \vec{v})$.

(a) Determine the determinant of

$$A = \begin{bmatrix} 1 & -2 & 3 & 1 \\ 5 & -9 & 6 & 3 \\ -1 & 2 & -6 & -2 \\ 2 & 8 & 6 & 1 \end{bmatrix}$$

(b) Prove that for any $\vec{u}, \vec{v} \in V$,

 $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2.$

(c) Use the adjoint of
$$A = \begin{bmatrix} 1 & -5 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
 to find A^{-1} .