Final Exam, Semester II, 1445 Dept. of Mathematics, College of Science, KSU Math: 280 - Full Mark: 40 - Time: 3H
 immediate

Question $1[2+2+2]$

1. Prove that for every real number, there exists an integer n such that $n-1 \leq x<n$. Find such n if $x=-\frac{17}{5}$.
2. Determine $\sup (A)$ and $\inf (A)$ where $A=\left\{x \in \mathbb{R}: x^{2}-9<0\right\}$, and justify your answer.
3. Show that $\sup \left\{\frac{n^{2}}{n^{2}+1}: n \in \mathbb{N}\right\}=1$.

Question 2 [4+4]
Find the following limits, if they exist:

1. $\lim _{n \rightarrow \infty} \frac{n^{3}}{2 n^{4}+1}$.
2. $\lim _{n \rightarrow \infty} c^{\frac{1}{n}}$, where $c>1$.
3. $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}$, where $n \in \mathbb{N}$.
4. $\lim _{n \rightarrow \infty} n a^{n}=0$, where $0<a<1$.

Question 3

Discuss the convergence of the following series:
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{n^{2}+1}$
(ii) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$

Question 4

Find the following limits, if they exist, and prove using the definition of the limit or sequence characterization:
(i) $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}$
(ii) $\lim _{x \rightarrow \infty}(\operatorname{sign}(x)+x)$
(iii) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+2}}$
(iv) $\lim _{x \rightarrow \infty} \frac{x^{4}}{e^{x}}$

Question 5

1. State Rolle's theorem
2. Prove that if f is continuous on $[a, b]$ and has zero derivative on (a, b), then f is constant.
3. Approximate the function $f(x)=\sin x$ on $(-1,1)$ by a polynomial of degree 3 .

Question 6

Let f be a bounded function on $[a, b]$.
(i) Prove that if f is integrable, then f.
(ii) Is the converse of (i) true? Justify your answer.
[Your justification goes here.]
(iii) Evaluate $\int_{0}^{1} x^{3} d x$ using Riemann sums.
[Your solution goes here.]

