Math 246	Name:
Fall 2015	
Mid 2	
23/6/1436	
Time Limit: 90 Minutes	Teaching Assistant

This exam contains 7 pages (including this cover page) and 6 questions. Total of points is 24.

Rest of introduction. Rest of introduction.

de fable (lef teacher abe on				
Question	Points	Score		
1	6			
2	3			
3	4			
4	3			
5	4			
6	4			
Total:	24			

	Grade Table	(for	teacher	use	only)	
--	-------------	------	---------	-----	-------	--

(a)	(b)	(c)	(d)	(e)	(f)

1. (6 points) Choose the correct answer. Write your answer in the previous table.

(a) The value of *a* that makes $A = \begin{bmatrix} -3 & a^2 \\ 4 & 0 \end{bmatrix}$ \mathbf{S} both A and B

$$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 symmetric is
B D. -3

(b) If
$$A = \begin{bmatrix} 2-x & 5 & x^2 \\ 0 & x+3 & x-1 \\ 0 & 0 & x \end{bmatrix}$$
 is invertible matrix , then $x =$
A. 0 B. 5 C. -3 D. 2
(c) If $A^{-2} = \begin{bmatrix} 16 & 0 & 0 \\ 0 & 9 & 0 \end{bmatrix}$ then

)

A. $A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ B. $A = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ C. $A = \begin{bmatrix} 256 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(d) For $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 7 & 6 \\ 1 & 0 & 8 \end{bmatrix}$ the cofactor C_{23} is
A. 2 B2 C. 3 D. 0
(e) If A is 4×4 matrix with det $A = 3$, then det $(2A(A^T)^{-1}) =$
A. 2.3^8 B. 16 C. 16.3^8 D. none.
(f) The coordinate vector of $w = (1,0)$ relatives to the basis $\{u_1 = (1,-1), u_2(1,1)\}$ of \mathbb{R}^2 is
A. $(\frac{1}{2}, -\frac{1}{2})$ B. $(\frac{1}{2}, \frac{2}{3})$ C. $(\frac{1}{2}, \frac{1}{2})$ D. $(1, 0)$.

- 2. (3 points) Determine whether the following is True or False.
 - (a) If A is a square matrix and the linear system has multiple solutions for x, then $\det A = 0$ ()

(b) The system

$$x_1 - 3x_2 = b_1$$
$$4x_1 - 12x_2 = b_2$$

is consistent for all values of b_1 and b_2 . (

(c) The vectors $\{(1,0,0), (0,1,0), (0,0,0)\}$ are linearly dependent ().

3. (4 points) Use Crammer's rule to solve the system

4. (3 points) Determine whether the set of all points

$$V = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$$

with the standard addition and scalar multiplications on \mathbb{R}^3 is a subspace of \mathbb{R}^3 or not.

- 5. (4 points) Prove one of the following statements
 - (a) Let V be a vector space and W is a nonempty subset of V. Assume that the following conditions hold
 - 1 If u and v are vectors in W, then $u + v \in W$.
 - 2 If k is a scalar and u is a vector in W, then $ku \in W$. Prove that W is a subspace of V.
 - (b) Prove that A set S with two or more vectors is linearly dependent if and only if at least one vector is expressible as a linear combinations of the other vectors in S.

The following question is a **bonus** question.

6. (4 points) [Bonus question] Find an elementary matrix E that satisfies EB = A where

$$B = \begin{bmatrix} 2 & 6 & -8 \\ 0 & 5 & 3 \\ 0 & -5 & 25 \end{bmatrix}, \qquad A = \begin{bmatrix} 2 & 6 & -8 \\ 0 & 5 & 3 \\ 4 & 7 & 9 \end{bmatrix}.$$

