Math 246
Fall 2015
Mid 2
23/6/1436
Time Limit: 90 Minutes
Teaching Assistant

This exam contains 7 pages (including this cover page) and 6 questions.
Total of points is 24 .
Rest of introduction. Rest of introduction.

Grade Table (for teacher use only)

Question	Points	Score
1	6	
2	3	
3	4	
4	3	
5	4	
6	4	
Total:	24	

(a)	(b)	(c)	(d)	(e)	(f)

1. (6 points) Choose the correct answer. Write your answer in the previous table.
(a) The value of a that makes $A=\left[\begin{array}{cc}-3 & a^{2} \\ 4 & 0\end{array}\right]$ symmetric is
A. 2
B. -2
C. both A and B
D. -3
(b) If $A=\left[\begin{array}{ccc}2-x & 5 & x^{2} \\ 0 & x+3 & x-1 \\ 0 & 0 & x\end{array}\right]$ is invertible matrix, then $x=$
A. 0
B. 5
C. -3
D. 2
(c) If $A^{-2}=\left[\begin{array}{ccc}16 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1\end{array}\right]$ then
A. $A=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. $A=\left[\begin{array}{lll}\frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right]$
C. $A=\left[\begin{array}{ccc}256 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) For $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 7 & 6 \\ 1 & 0 & 8\end{array}\right]$ the cofactor C_{23} is
A. 2
B. -2
C. 3
D. 0
(e) If A is 4×4 matrix with $\operatorname{det} A=3$, then $\operatorname{det}\left(2 A\left(A^{T}\right)^{-1}\right)=$
A. 2.3^{8}
B. 16
C. 16.3^{8}
D. none.
(f) The coordinate vector of $w=(1,0)$ relatives to the basis $\left\{u_{1}=(1,-1), u_{2}(1,1)\right\}$ of \mathbb{R}^{2} is
A. $\left(\frac{1}{2},-\frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{2}{3}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. $(1,0)$.
2. (3 points) Determine whether the following is True or False.
(a) If A is a square matrix and the linear system has multiple solutions for x, then $\operatorname{det} A=0$
(b) The system

$$
\begin{aligned}
x_{1}-3 x_{2} & =b_{1} \\
4 x_{1}-12 x_{2} & =b_{2}
\end{aligned}
$$

is consistent for all values of b_{1} and b_{2}.
(c) The vectors $\{(1,0,0),(0,1,0),(0,0,0)\}$ are linearly dependent
3. (4 points) Use Crammer's rule to solve the system

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =2 \\
2 x_{1}-x_{2} & =2 \\
4 x_{1}-3 x_{3} & =1
\end{aligned}
$$

4. (3 points) Determine whether the set of all points

$$
V=\left\{(x, y, z) \in \mathbb{R}^{3}: x y z=0\right\}
$$

with the standard addition and scalar multiplications on \mathbb{R}^{3} is a subspace of \mathbb{R}^{3} or not.
\qquad
\qquad
\qquad \square.
\qquad
5. (4 points) Prove one of the following statements
(a) Let V be a vector space and W is a nonempty subset of V. Assume that the following conditions hold

1 If u and v are vectors in W, then $u+v \in W$.
2 If k is a scalar and u is a vector in W, then $k u \in W$. Prove that W is a subspace of V.
(b) Prove that A set S with two or more vectors is linearly dependent if and only if at least one vector is expressible as a linear combinations of the other vectors in S.
\qquad

The following question is a bonus question.
6. (4 points) [Bonus question] Find an elementary matrix E that satisfies $E B=A$ where

$$
B=\left[\begin{array}{ccc}
2 & 6 & -8 \\
0 & 5 & 3 \\
0 & -5 & 25
\end{array}\right], \quad A=\left[\begin{array}{ccc}
2 & 6 & -8 \\
0 & 5 & 3 \\
4 & 7 & 9
\end{array}\right]
$$

