College of Sciences Department of Physics and Astronomy كلية العلوم قسم الفيزياء والفلك

First Midterm Exam

Monday, 4/3/1440	PHYS 111	Academic year 1439-40H
10:00 – 11 :30 a.m.	General Physics 2	Second Semester

Student's Name		اسم الطالبة	
ID number		الرقم الجامعي	
Section No.	1279	رقم الشعبة	
Classroom No.		رقم قاعة الاختبار	20
Teacher's Name	نوف سعد الخضران	اسم أستاذة المقرر	
Roll Number		رقم التحضير	

Write your selected answer for each question in CAPITAL LETTERS here:

اكتب الحرف الدال على إجابتك في الجدول التالى:

Q1	Q2	Q3	Q4	Q5
Q6	Q7	Q8	Q9	Q10
Q11	Q12	Q13	Q14	Q15
Q16	Q17	Q18	Q19	Q20

Constants

 $h = 6.63 \times 10^{-34} \text{ J.s}, \qquad c = 3 \times 10^8 \text{ m.s}^{-1}, \qquad 1 \text{ e.V} = 1.6 \times 10^{-19} \text{ J}$

Q1. The wavelength of l	ight that has a frequency of	4.98×10^{14} s ⁻¹ is:	
A) 6×10 ⁻⁷ m	B) 14.9×10 ⁻⁷ m	C) 0.004 m	D) 0.049 m
Q2. The electromagneti	c wave that has the highest	energy is:	
A) Red	B) Radio	C) Infrared	D) Blue
Q3. What is the refractive	ve index of the glass when the	ne speed of light in a	a certain glass is 1.91 x 10 ⁸ m/s.
A) 0.64	B) 1.57	C) 1.09	D) 4.9
Q4. The image formed b	y a flat mirror is always:		
A) real and upright	B) virtual and upright	C) real and inverted	D) virtual and inverted
Q5. When light is incide	ent on a rough surface	reflection tak	es place.
A) specular	B) irregular	C) diffused	D) normal
Q6. The focal length of a	a concave mirror is 15 cm. I	ts radius of curvatur	e is:
A) 15 cm	B) 30 cm	C) 7.5 cm	D) 45 cm
Q7. An object is placed	9 cm from a convex lens wh	nose focal length is 8	3 cm. The image distance is:
A) 50 cm	B) 72 cm	C) 9 cm	D) 8 cm
Q8. The angle of incide	ence at a plane mirror is 30°	. The angle of reflec	tion is:
A) 12.5°	B) 60°	C) 30°	D) 15°
Q9. An object located at The type of the lens is:	4.5 cm in front of a lens for	orms a virtual image	at 2.25 cm in front of the lens.
A) Concave	B) Convex	C) Converging	D) planoconvex
Q10. A 6 cm tall object height is:	is placed in front of a conve	x lens that has a mag	gnification (M = -2.5). The image
A) 15 cm, upright	B) 15 cm, inverted	C) 3 cm, upright	D) 3 cm, inverted
Q11. A spherical mirror 10.00 cm is:	t has a focal length of +10.0	0 cm. The image loo	cation for an object distance of
A) 16 cm	B) -8 cm	C) -10 cm	D) ∞
Q12. The work function	for zinc is 4.31 eV. The cut	off wavelength for 2	zinc is:
A) 806 nm	B) 666 nm	C) 288 nm	D) 406 nm

Q13. Light of wavelength 400 nm is incident on a metal surface. As a result an electron is ejected from the metal surface with a maximum kinetic energy of 1.1×10^{-19} J. The work function, in eV, of the metal surface is:

Q14. Wien's displacement law state that as the temperature of the blackbody increases, the peak wavelength of the radiation curve:

Q15. -----derived the equation for $I(\lambda, T)$ that is successfully agree with experimental results of blackbody radiation at all wavelengths.

A) Stefan Boltzmann B) Albert Einstein C) Max Planck D) Rayleigh–Jeans

Q16. Four different electric circuits connected differently. These circuits have identical resistors, R and batteries, V. The circuit that draws the largest amount of current is: C

Q17. A cylindrical wire has a radius r and length ℓ . If both r and ℓ are tripled, the electric resistance of the wire (R) will become:

A) 9 R B) 3 R C) R D) R/3

Q18. A total charge of 8.0 mC flows through the cross-section of a metallic wire in 4s. The current in the wire in mA is:

|--|

Q19. A good electric conducator has

A) low resistivity	B) low resistivity	C) high resistivity	D) high resistivity
& low conductivity	& high conductivity	& low conductivity	& high conductivity

Q20. If $R_1 = 10 \Omega$, $R_2 = 15 \Omega$, $R_3 = 20 \Omega$, and I = 0.50 A, the dissipated power in the circuit is: A) 29 W B) 16 W C) 11 W D) 22 W

Q21. A 1 cm high object is placed 5 cm from a convex mirror whose focal length is 4 cm.

- a) Sketch the ray diagram.
- b) Find the location of the image and its size.
- c) Determine the characteristics of the image.