

Department of Statistics & Operations Research College of Science, King Saud University

STAT 324 Second Midterm Exam Second Semester 1431 – 1432 H

	اسم الطالب
رقم التحضير	الرقم الجامعي
اسم الدكتور	رقم الشعبة

- Mobile Telephones are <u>not allowed</u> in the classrooms.
- Time allowed is <u>90 minutes</u>. (7 8.30 PM)
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. <u>They have different questions forms.</u>
- For each question, put the code of the correct answer in the following table beneath the question number. <u>Do not use pencil</u>. Use Capital letters.

1	2	3	4	5	6	7	8	9	10
D	B	E	-D	A	D	A	C	В	A
	2000							ı	
11	12	13	14	15	16	17	18	19	20
A	D	В	C	B	D	D	D	C	A
21	22	23	24	25	26	27	28	29	30
D	0	P	-	Δ	0	2	A	0	D

>>>>	Assume that the length (i	n minutes) of a	particular	type of a	telephone	conversation	is a	L
	random variable X with a	probability dens	sity function	n of the fo	orm:			

$$f(x) = \begin{cases} \frac{1}{5}e^{-\frac{1}{5}x} & ; x > 0 \\ 0 & ; \text{elsewhere} \end{cases}$$

111	COL		CYT	
()	The	average	ot X	10
1 1	1 1110	average	OI II	10

(1	A) 1	(B)	2.5	(C)	0.2	(1	D) 5	(E	(E) none of these

(2) The standard deviation of X is:

(A) 0.2	(B) 5	(C) 25	(D) 1	(E) none of these

(3) The probability $P(\mu - 2\sigma < X < \mu + 2\sigma)$ will have an exact value equal to:

p	·			
(A) 0. 9502	(B) 0.2	(C) 0.3181	(D) 0.75	(E) none of these

(4) According to Chebychev theorem the lower bound for the probability $P(\mu - 2\sigma < X < \mu + 2\sigma)$ is:

(A) 0.25	(B) 0.2	(C) 0.0498	(D) 0.75	(E) none of these

>>>> Suppose the weight of a large number of fat persons is normally distributed with mean of 128 kg and a standard deviation of 9 kg.

(5) If we select a person at random, the probability that his weight will be at least 110 kg is:

	P TIEGIT WIT TWITTER,	me presuentity in	at 1115 11 01 511 1 1 1 1 1 1 1 1 1 1 1 1	00 40 10400 110 115 10.
(A) 0.9772	(B) 0.9982	(C) 0.4207	(D) 0.0228	(E) none of these

(6) The percentage of fat persons with weights less than 149 kg is:

(A) 90.03 %	(B) 1 %	(C) 50 %	(D) 99.01 %	(E) none of these
(11) 70.03 70	(B) 1 /0	(C) 30 70	(D) 33.01 70	(L) Holle of these

(7) The weight in kg above which 50 % of those persons will be, is:

(A) 128 (B) 0 (C) 118.28 (D) 119 (E) none of these	(A) 128	(B) 0	(C) 118.28	(D) 119	(E) none of these
--	---------	-------	------------	---------	-------------------

>>>> If the random variable X has a normal distribution with the mean μ and the variance σ^2 ,

(8) Then $P(X < \mu + 2\sigma)$ equals to

(A) 0.0228	(B) 0.6772	(C) 0.9772	(D) 0.2020	(E) none of these

>>>> If the random variable X has a normal distribution with the mean μ and the variance 1, and if P(X < 3) = 0.877,

(9) Then μ equals:

(A) 1.16	(B) 1.84	(C) 4.16	(D) 0.16	(E) none of these

(A) 0.25	(D) 0.5			
	(B) 0.5	(C) 0.1	(D) 4	(E) none of these
	the random vari	able X has the fo	llowing probabil	ity density function (p
1) The mean o	f X (E(X)) is:			
(A) 5	(B) 0.8	(C) 0.5	(D) 0.25	(E) none of these
2) $P(X > 5)$ is	:			
(A) 1	(B) 0.8	(C) 0.6	(D) 0.5	(E) none of these
3) E(X ²) is:				
(A) 0.33	(B) 33.3	(C) 333.3	(D) 5	(E) none of these
4) V(X) is:				
(A) 10	(B) 2.9	(C) 8.3	(D) 0.5	(E) none of these
$5) \qquad P(X \ge 15) \text{ is}$	is:			
(A) 1	(B) 0	(C) 0.25	(D) 0.15	(E) none of these
		ve transistors. It h		ed that two of the e selected at random,
		selected transistor		

(17) The probability that both the selected transistors are defective is:

(B) 1.0 (C) 0.4

(C) 0.16

(18) If X = the number of defective transistors found in the sample, then the mean of X is:

(D) 0.10

(D) 0.8

(B) 0.60

(E) none of these

(A) 0.40

>>>> Five terminals on an on-line computer system are attached to a communication line to the central computer system. The probability that any terminal is ready to transmit is 0.95. Then						
(19) The probability that at least 4 will be ready is:						
(A) 0.7738	(B) 0.2036	(C) 0.9774	(D0.0226	(E) none of these		
		2				

(20) The mean of the number of ready terminals is:

(A) 4.75
(B) 0.2375
(C) 3.0
(D) 2.5
(E) none of these

(21) The variance of the number of ready terminals is:

(A) 4.75
(B) 0.2375
(C) 0.25
(D) 2.0
(E) none of these

>>>> The number of traffic accidents that occurs on a particular road during a month follows a Poisson distribution with a mean of 8.

(22) The probability that less than two accidents will occur on that road during a randomly selected month is:

(A) 0.0331 (B) 0.0003 (C) 0.003 (D) 0.9997 (E) none of these

(23) The probability that exactly 4 accidents will occur on that road during a randomly selected 2 months is:

(A) 0.0331 (B) 0.003 (C) 0.0003 (D) 0.0573 (E) none of these

(24) The standard deviation for the number of accidents during a randomly selected month is:

(A) 8.00 (B) 4.00 (C) 2.83 (D) 2.00 (E) none of these

>>>> The weights of the population of the Riyadh follows a normal distribution with mean 80 kg and standard deviation 5 kg, while the population of Damam follows a normal distribution with mean 75 kg and standard deviation 3 kg. If we select a random sample of 50 persons who live in Riyadh and another random sample of 36 persons who live in Damam then,

(25) The variance of the difference $\overline{X}_1 - \overline{X}_2$, $\sigma^2_{\overline{X}_1 - \overline{X}_2}$, is:

(A) 0.75 (B) 0.3770 (C) 0.7498 (D) 0.2502 (E) none of these

(26) $P(4 < \overline{X}_1 - \overline{X}_2 < 6) =$

(A) 0.8749 (B) 0.3821 (C) 0.7498 (D) 0.2523 (E) none of these

>>> Assume that the average weight of a 6 th grader is 80 pounds, with a standard deviation of 20 pounds. Suppose you draw a random sample of 25 students.							
(27) The probability that the average weight of a sampled student is more than 75 pounds, assuming the population is normally distributed, is:							
(A)	0.1056	(B) 0.8944	(C) 0.4013	(D) 0.5967	(E) none of these		
>>>> A sample of 25 observations is drawn from a normal population with mean = 40 and variance = 100.							
(29) The mean of the sample mean, $\mu_{\bar{\chi}}$, is							
(A)	10	(B) 100	(C) 6.32	(D) 40	(E) none of these		
(30) The standard error of sample mean, $\sigma_{\overline{X}}$, is							
(A)	10	(B) 100	(C) 40	(D) 2	(E) none of these		

Good luck

(1)
$$X \sim Exp(B)$$

 $f(x) = \frac{1}{B}e^{-\frac{\pi}{B}}$, $x > 0$
 $\beta = 5$, $M_X = 5$

(2)
$$\sigma_{x} = B = 5$$

(3)
$$P(M-2e < X < M+2e) = P(-5 < X < 5) = \int_{-5}^{5} f(x) dx$$

= $\int_{-5}^{1} \frac{1}{5} e^{-\frac{x}{5}} dx = -e^{-\frac{x}{5}} \Big|_{0}^{5}$
= $1 - e^{-\frac{x}{5}} = 0.632$

(4)
$$P(M-2e < X < M+2e)$$

= $P(|X-M| < 2e) 7/1 - \frac{1}{2^2} = 0.75$

(5)
$$\times \sim N(M,6)$$
 $M = 128$, $S = 9$
 $P(\times 7,110) = P(Z7, \frac{110-128}{9}) = P(Z7,-Z)$
 $= 1 - P(Z<-Z) = 1 - 0.0228 = 0.9772$

(7)
$$P(X79) = 0.5 = 7 P(X \le 9) = 1 - 0.5$$

$$P(Z \le \frac{q-128}{6}) = 0.5$$

$$\frac{q-128}{6} = 0 \qquad q = 128$$

= 0-9772

$$Z = \frac{X - M}{\sigma}$$

 $P(X < M + 2\sigma) = P(Z < \frac{M + 2\sigma - M}{\sigma}) = P(Z < Z)$

(9)
$$P(X<3) = 0.877$$

 $P(Z<\frac{3-M}{1}) = 0.877$ $|M=1.84|$

(10)
$$f(x) = K$$
; $x = 1, 2, 3, 4$
 $K = \frac{1}{4} = 0.25$
(11) $f(x) = 0.1$; $0 < x < 10$
 $M_{X} = \mathcal{E}(X) = \frac{a+b}{2} = 5$ $\frac{(a+b)}{2}$
(12) $P(X75) = \frac{1}{5} = 0.1$ $dx = 0.1 [10-5] = 0.5$
(13) $G_{X}^{2} = Var(X) = \frac{(b-a)^{2}}{12} = \frac{(10-a)^{2}}{12} = 3.33$
 $Var(X) = \mathcal{E}(x^{2}) - [\mathcal{E}(x)]$
 $8.53 = \mathcal{E}(x^{2}) - (5)^{2}$ $\mathcal{E}(x^{2}) = 35.33$
(14) $Var(X) = 8.33$
(15) $P(X715) = 0$
(16) $N = 5$; $k = 2$; $n = 2$
 $P(X = 0) = \frac{(\frac{3}{5})(\frac{3}{5})}{(\frac{5}{5})} = 0.3$
(17) $P(X = 2) = \frac{(\frac{2}{5})(\frac{3}{5})}{(\frac{5}{5})} = 0.1$
(18) $M_{X} = n - \frac{k}{N} = 2 * \frac{2}{5} = 0.8$
(19) $n = 5$; $p = 0.95$; $q = 0.05$
 $P(X74) = P(X=4) + P(X=5)$
 $= (\frac{6}{4})(0.95)^{\frac{1}{4}}(0.05) + (\frac{5}{5})(0.95)^{\frac{5}{5}}$
 $= 0.9774$
(20) $M_{X} = np = 5 * 0.95 * 0.05 = 0.2375$

(22)
$$X \sim Poisson(\mu)$$
 , $M = XE$

$$A = 8 \times 1 = 8$$

$$P(X < Z) = P(X = 0) + P(X = 1)$$

$$= e^{-8} \frac{8^{\circ}}{0!} + e^{-8} \frac{8}{1!} = 9e^{-8} = 0.003$$
(23) $A = 8 \times 2 = 16$

$$P(X = 4) = e^{-16} \frac{16^{4}}{4!} = 0.0003$$
(24) $M = 8 \times 2 = 16$

$$P(X = 4) = e^{-16} \frac{16^{4}}{4!} = 0.0003$$
(25) $X_{1} \sim N(M_{1}, \sigma_{1})$

$$M_{2} = 76 \Rightarrow \sigma_{2} = 3$$

$$N_{3} = 36$$

$$\sigma_{3} = \frac{\sigma_{1}^{2}}{7} + \frac{\sigma_{2}^{2}}{7} = \frac{5^{\circ}}{50} + \frac{3^{\circ}}{36} = 0.75$$
(26) $P(4 < X_{1} - X_{2} < 6) = P(X - X_{2} < 6) - P(X - X_{2} < 4)$

$$= P(Z < \frac{6-5}{0.366}) - P(Z < \frac{4-5}{0.366})$$

$$= P(Z < 1.15) - P(Z < -1.15)$$

$$= 7.87 + 9 - 1.251 = -7.498$$

$$P(X = 775) = 1 - P(X < 75)$$

$$= 1 - P(Z < \frac{75-80}{125}) = 1 - P(Z < -1.25)$$

$$= 1 - P(Z < \frac{75-80}{125}) = 1 - P(Z < -1.25)$$
(28) $X = 3$ of $X = M_{X} = 4$ of $X = \frac{10}{125} = \frac{10}{5} = 2$