Department of Statistics \& Operations Research College of Science, King Saud University

STAT 145

Final Examination
Second Semester 1431 - 1432 H

		\|سم الطالب
	رقم التّضير	الرقّ الجامعى
	اسم الاكتور	رقم الشعبة

- Mobile Telephones are not allowed in the classrooms.
- Time allowed is $\mathbf{3}$ Hours.
- Answer all questions.
- Choose the nearest number to your answer.
- For each question, put the code (Capital Letters) of the correct answer in the following table beneath the question number. Do not use pencil or red pens.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A	D	A	C	A	C	B	C	B	D
$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
B	D	B	A	B	A	A	B	C	A
21	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
C	D	B	C	A	B	B	A	D	D
$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	40
A	C	C	B	A	D	D	C	B	A
41	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	49	$\mathbf{5 0}$
B	C	C	B	B	B	B	B	C	A

Term Marks	Final Exam. Marks	Total Marks

>>>

Following are the weights (in kg) for a sample of 6 children. $13,20,18,12,15$, and 12.
(1) The mean of the data is:

| A) 12 | B) | 15 | C) | 10 | D) | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(2) The median of the data is:

A)	17	B)	12	C)	10	D)	$\underline{14}$

(3) The mode of the data is:
A) $\underline{12}$
B) 20
C) 15
D) 2
(4) The variance of the data is:

A)	3.347	B)	3.055	C)	$\underline{11.200}$	D)	9.333

(5) The coefficient of variation (C.V.) of the data is:

| A) 22.3% | B) | 17.4% | C) | 74.7% | D) | 62.22% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

>>>
Temperatures recorded at 2 pm for 5 days of a year, for a city are:

$$
7, \quad 4, \quad 0, \quad-5, \quad \text { and } \quad 40 .
$$

(6) The range of temperatures is:
A) 33
B) 40
C) $\underline{\underline{45}}$
D) 5
(7) The most suitable measure of centre for the data is:

A)	Mean	B)	Median	C)	Mode	D)	Range

"»>
Let A and B denote two events defined on the same sample space with $P(A)=0.6, P(B)=$ 0.4 , and $P(A \cup B)=0.74$, then:
(8) The events A and B are:

A)	independent	B)	mutually exclusive	C)	dependent	D)	impossible

(9) The $P(\bar{A} \cup \bar{B})$ is:

A)	0.18

B) $\underline{0.26}$
C) 0.50
(D) 1.00

»»

Consider the following cumulative frequency distribution table for the ages of all workers in a certain factory.

Age	Cumulative frequency
$26-35$	10
$36-45$	40
$46-55$	50

(10) Percentage of workers in the age group 36-45 is:

A)	40%	B)	80%	C)	30%	D)	60%

(11) Number of workers having age 36 or more is:

A)	90	B)	$\underline{40}$	C)	10	D)	50

(12) The true class limits for the first class are:

A)	$26-35$	B)	$21.5-35.5$	C)	$25.5-34.5$	D)	$\underline{25.5-35.5}$

>>>
Let A and B be two independent events. Suppose that $P(A)=0.6$ and $P(B)=0.3$ then
(13) $P(\bar{A} \cap B)$ equals:

A)	0.08	B)	$\underline{0.12}$	C)	0.20	D)	0.42

(14) $P(A \cup B)$ equals:
A) $\underline{0.72}$
B) 0.90
C) 0.10
D) 0.7
>>>
Suppose that a town has 20% of men known to have a certain disease. A certain medical test is applied to randomly selected 500 men. The following data is obtained.

	Disease		
Test	Present	Absent	Total
Positive	$\mathbf{8 2}$	$\mathbf{8 0}$	$\mathbf{1 6 2}$
Negative	$\mathbf{3 8}$	$\mathbf{3 0 0}$	$\mathbf{3 3 8}$
Total	$\mathbf{1 2 0}$	$\mathbf{3 8 0}$	$\mathbf{5 0 0}$

Let an individual be selected at random from the sample.
(15) The probability that the selected person has the disease is:
A) 0.20
B) $\underline{0.24}$
C) 0.68
D) 0.32
(16) The probability that the test gives a false negative result is:

A)	$\underline{0.32}$	B)	0.68	C)	0.21	D)	0.79

(17) The sensitivity of the test is:

A)	$\underline{0.68}$	B)	0.16	C)	0.51	D)	0.79

(18) Suppose that 20% of men in the town have the disease, the predictive probability negative for the test is:

A)	0.37	B)	$\underline{0.62}$	C)	0.09	D)	0.89

»"»
In a large population of people, 34% have blood type A+. If we randomly choose 8 persons from this population and let $X=$ the number in the $\mathbf{8}$ chosen that with blood type A+.
(19) The values of the parameters of the distribution are:
A) 3 and 0.34
B) 8 , and 0.66
C) 8 and 0.34
D) 8 and 34
(20) The probability that there is exactly one person with blood type A+:
A) $\underline{0.1484}$
B) 0.0028
C) 0.3400
D) 0.0185
(21) The probability that there is at least one person with blood type A+:

A)	0.1484	B)	0.1844	C)	$\underline{0.9640}$	D)	0.0360

>>>
The number of serious surgical operations that are performed in a hospital during a day follows a Poisson distribution with an average of 5 persons per day, then:
(22) The probability that no operations is performed in the next day is:

A)	0.99996	B)	$\underline{0.0067}$	C)	0.54210	D)	0.08972

(23) The probability that 5 operations are performed in the next day is:

A)	0.2145	B)	0.8521	C)	$\underline{0.175}$	D)	0.5124

(24) The average number of operations that are performed in two days is:

A) 20	B)	$\underline{10}$	C)	5	D)	30

>>>
In a population of people, $X=$ the body mass index (in $\mathrm{kg} / \mathrm{m}^{2}$) is normally distributed with mean $\mu=25$ and standard deviation $\sigma=2$. For a randomly chosen person,
(25) $\mathrm{P}(24<\mathrm{X}<26)=$
A) 0.6915
B) $\underline{\underline{0.3830}}$
C) 0.2085
D) 1 1
(26) $\mathrm{P}(\mathrm{X}>21)=$

A) $\underline{0.9772}$ B) 0.0228 C) 1 D) (27) $\mathrm{P}(\mathrm{X}=21)=$ A) 0.9772\quad B) 00.0228

B) 0.0228
C) 1
D) $\underline{0}$
(28) Find the value of k such that $\mathrm{P}(\mathrm{X}>\mathrm{k})=0.2578$.

A)	0.257	B)	25	C)	-0.65	D)	26.3

>>

A sample of size 100 is taken from a population having a proportion $p_{1}=0.8$. Another independent sample of size 400 is taken from a population having a proportion $p_{2}=0.5$.
(29) The sampling distribution for the difference in sample proportions has a mean equals:
A) $\underline{0.3}$
B) 1.3
C) 0
D) 0.8
(30) The sampling distribution for the difference in sample proportions has a standard error equals:

| A) 0.015 | B) |
| :--- | :--- | :--- |
| (31) $\mathrm{P}\left(\hat{p}_{1}-\hat{p}_{2}<0.2\right)=$: | |
| A) 0.4423 | B |

A)	0.4423	B)	0.993	C)	$\underline{0.0166}$	D)	0.2415

"»»

Suppose it has been established that for a certain type of client the average length of a home visit by a public health nurse is $\mathbf{4 5}$ minutes with a standard deviation of $\mathbf{1 5}$ minutes, and that for a second type of client the average home visit is 30 minutes with a standard deviation of $\mathbf{2 0}$ minutes. If a nurse randomly visits $\mathbf{3 5}$ clients from the first population and 40 from the second population, then
(32) The mean of the difference between two sample means is:

| A) 5 | B) | 15 | C) | 20 | D) | 35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(33) The standard deviation of the difference between two sample means is:

A)	4.0532	B)	16.4286	C)	8.2143	D)	0.5241

(34) The probability that the average length of home visit will differ between the two groups by 20 or more is:

A)	0.8907	B)	0.4215	C)	0.5	D)	$\underline{0.1093}$

»»

A researcher wishes to determine if vitamin E supplements could increase cognitive ability among elderly women. In 1999 the researcher recruits a sample of elderly women age 7580. At the time of the enrollment into the study, the women were randomized to either take Vitamin E, or a placebo for six months. At the end of the six month period, the women were given a cognition test. Higher scores on this test indicate better cognition. The mean of the test scores of 81 women who took vitamin E supplements was $\bar{X}_{1}=27$, while the mean of the test scores of the 90 women who took placebo supplements was $\bar{X}_{2}=24$ Assuming the two populations follow approximately two different normal distributions with standard deviations, $\sigma_{1}=6.9$ and , $\sigma_{2}=6.2$, respectively.
(35) The point estimate for the difference between the two population means $\left(\mu_{1}-\mu_{2}\right)$:

A) 27	B)	24	C)	6.2	D)	$\underline{3}$

(36) The standard error for the difference between the two sample means $\left(\bar{X}_{1}-\bar{X}_{2}\right)$:

A)	6.9	B)	6.2	C)	$\underline{1.007}$	D)	3

(37) A lower limit of a 95% C.I. for the difference between the two population means $\left(\mu_{1}-\mu_{2}\right):$

A)	$\underline{1.0263}$	B)	4.9745	C)	5.9120	D)

">>
Six healthy three year old female sheep were injected with the antibiotic Gentamicin, at a dosage of $10 \mathrm{mg} / \mathrm{kg}$ body weight. Their blood serum concentrations ($\mathrm{mg} / \mathrm{ml}$) of Gentamicin after injection were $33 ; 26 ; 34 ; 31 ; 23 ; 25$, the summary statistics for these data are

n	mean	Standard deviation	SE(mean)
6	28.67	4.59	1.87

Assuming the data follows approximately a normal distribution,
(38) The standard error of the sample mean is equal to:

A)	0.25	B)	1.87	C)	4.59	D)	28.67

(39) At the 90%, the ratability coefficient is equal to:

A)	2.33	B)	$\underline{2.015}$	C)	3.215	D)	1.96

(40) The 90% confidence interval for the population mean score on this test is:

A)	$(27.412,30.145)$	B)	$(24.48,29.10)$	C)	$(24.902,32.438)$	D)	$(32.48,39.55)$

(41) The test statistic for testing the hypotheses $H_{0}: \mu=30 v s H_{1}: \mu<30$ is equal to:

A)	-2.2587	B)	2.5812	C)	$\underline{-0.7112}$	D)	3.3412

(42) At the 5\% significance level the critical region is :
A) $(-\infty,-2.015)$
B) $(-2.015,2.015)$
C) $(2.015, \infty)$
D) $(2.58, \infty)$
(43) At the 5\% significance level we are able to :

| A) | Reject H_{0} | B) | Not to reject |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H_{0} | C) | Decision is not possible | |

>>>
A biostatistician , found that among 2000 boys ages 7 to 12 years. 400 were overweight. On the basis of this study:
(44) The standard error of the sample proportion of the overweight boys ages 7 to 12 years is:

A)	0.0500	B)	$\underline{0.0089}$	C)	0.6587	D)	0.0221

(45) The 99% upper confidence limit for the population proportion of the overweight boys ages 7 to12 years is:

A)	0.5000	B)	$\underline{0.223}$	C)	0.6587	D)	0.0221

(46) The test statistic for testing the hypotheses the proportion of boys ages 7 to 12 year does not equal 18 is:

A)	-2.2587	B)	$\underline{2.33}$	C)	-0.7112	D)	3.3412

(47) At the 5% significance level, can we conclude that more than 18% of boys ages 7 to 12 years are overweight:

A) Yes	B)	No	C)	Decision is not possible

>>>
A sample of 25 freshman nursing students made a mean score of $77.0 n$ a test designed to measure the attitude toward the dying patient. The sample standard deviation was 10. Assuming the data comes from a normal population,
(48) The statistical hypothesis for testing the hypothesis that the mean score is different than 80 is:

A)	$H_{0}: \mu=80$ vs $H_{1}: \mu \neq 80$	B)	$H_{0}: \mu=80$ vs $H_{1}: \mu<80$
C)	$H_{0}: \mu=80$ vs $H_{1}: \mu>80$	D)	$H_{0}: \mu=77$ vs $H_{1}: \mu<77$

(49) The test statistic for these statistical hypothesis is:

| A) -1.500 | B) | -2.025 | C) | 3.258 | D) | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(50) At the 5\% significance level we are able to :

A)	Reject H_{0}	B)	Not to reject H_{0}	C)	Decision is not possible

