

بسم الله الرحمن الرحيم Department of Statistics & Operations Research College of Science, King Saud University

STAT 324 First Midterm Exam Second Semester 1430 – 1431 H

	اسم الطالب
رقم التحضير	الرقم الجامعي
اسم الدكتور	رقم الشعبة

- Mobile Telephones are <u>not allowed</u> in the classrooms.
- Time allowed is 90 minutes.
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. <u>They have different questions forms.</u>
- For each question, put the code of the correct answer in the following table beneath the question number:

1	2	3	4	5	6	7	8	9	10
A	C	C	D	В	A	D	В	Α	D
		-							
11	12	13	14	15	16	17	18	19	20
В	В	D	C	A	C	A	В	В	C
			1						
21	22	23	24	25	26	27	28	29	30
A	Ā	С	В	D	С	A	D	D	A
					1	}			}

*

Suppose that the error in the reaction temperature, in ${}^{0}C$, for a controlled laboratory experiment is a continuous random variable X having the function

$$f(x) = \begin{cases} \frac{8}{x^3}, & x > 2\\ 0, & \text{elsewhere,} \end{cases}$$

then:

(1)	P(X < 4)			
	(A) 0.75	(B) 3.0	(C) 0.50	(D) 0.15
(2)	P(-1 < X < 4)			
	(A) 3.0	(B) 0.15	(C) 0.75	(D) 0.5
(3)	$P(X \ge 5)$			
	(A) 1.0	(B) 0.15	(C) 0.16	(D) 0.5
(4)	The expected val	ue of X; E(X) equals	S	
	(A) 2.0	(B) 1.0	(C) 8.0	(D) 4.0

>> >>

An investment firm offers its customers municipal bands that mature after different numbers of years. Given that cumulative distribution function of X, the number of years to maturity for a randomly selected bond is:

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.24 & 1 \le x < 3 \\ 0.56, & 3 \le x < 5 \\ 1, & x \ge 5 \end{cases}$$

(5)	P(X = 5) equals	to		
	(A) 0.76	(B) 0.44	(C) 0.56	(D) 0.20
(6)	P(X > 2)			
	(A) 0.76	(B) 0.56	(C) 0.50	(D) 0.20
(7)	P(1.5 < X < 5)			
	(A) 0.2	(B) 0.76	(C) 0.56	(D) 0.32

>>

Suppose that $P(A_1) = 0.4$, $P(A_1 \cap A_2) = 0.2$, $P(A_3 | A_1 \cap A_2) = 0.75$, then:

(8)	(8) $P(A_2 A_1)$ equals to								
	(A) 0.00	(B) 0.50	(C) 0.1	(D) 0.2					
(9)	(9) $P(A_1 \cap A_2 \cap A_3)$ equals to								
	(A) 0.15	(B) 0.75	(C) 1.0	(D) 0.2					

****** **

A certain group of adults are classified according to sex and their level of

education as given by the following table:

	Female	Male
Sex		
Sex Education		
College	17	22
Secondary	45	38
Elementary	50	28

If a person is selected at random from this group, then

(10) The probability that the person is female is:								
(A) 0.44 (B) 0.50 (C) 0.28 (D) 0.56								
(11) The probability that the person is female and has an elementary education is:								
(A) 0.64 (B) 0.25 (C) 0.45 (D) 0.50								

>> >>

Suppose that a certain institute offers two training programs T_1 and T_2 . In the last year, 100 and 200 trainees were enrolled for programs T_1 and T_2 , respectively. From the past experience it is known that the passing probabilities are 0.75 for the program T_1 and 0.80 for the program T_2 . Assume that at the end of the last year we selected a trainee at random from this institute.

	(12) The probability that the selected trainee passed the program equals to											
	(A) 0.53 (B) 0.78 (C) 0.50 (D) 0.25											
ľ	(13)	What i	is the proba	bility	that the	selected	trainee	has	been	enrolled	in	the
١	program T ₂ given that he passed the program											
		(A)	0.80	(B)	0.32	(C)	0.78		(D)	0.68		

→

If P(A) = 0.9, P(B) = 0.6, and $P(A^{(c)} \cap B) = 0.1$, then:

(14)	$P(A \cap B)$ equals to								
	(A) 0.30	(B) 0.40	(C) 0.50	(D) 0.20					
(15)	$P(A \cup B)^{c}$ eq	uals to							
	(A) 0.00	(B) 1.00	(C) 0.50	(D) 0.15					
(16)	P(Ac B) equ	uals to							
	(A) 0.10	(B) 0.50	(C) 0.17	(D) 0.011					
(17)	P(B A ^c) equa	ls to							
	(A) 1.00	(B) 0.011	(C) 0.50	(D) 0.017					

**

If P(A) = 0.8, P(B) = 0.5, and $P(A \cup B) = 0.9$, then:

(18)	The	two events A	and B	are			
	(A)	dependent	(B)	independent	(C) disjoint	(D)	Mutually exclusive

>> >>

If the function $f(x) = C(x^2 + 3)$ for x = 0, 1, 2 can serve as a probability distribution of the discrete random variable X.

(19)	The value of C equals to						
	(A) 14	(B) 0.071	(C) 12	(D) 0.032			

****** **

Suppose that we have probability function f(x) = 0.1x, for x = 1, 2, 3, 4. Then

(20)	P(X > 2) equal	s to		
	(A) 0.3	(B) 0.1	(C) 0.7	(D) 0.9
(21)	The expected	value of X equals		
	(A) 3.0	(B) 2.5	(C) 0.25	(D) 0.5
(22)	The Variance	of X equals		
	(A) 1.0	(B) 3.54	(C) 1.25	(D) 0.5

>> >>

If the random variable X has probability density

$$f(x) = \begin{cases} \frac{x^2}{3}, & k < x < 2 \\ 0, & \text{elsewhere} \end{cases}$$

(23)	Then the value of k equals							
	(A)	0.44	(B)	0.40	(C)	-1.0	(D)	0.23

****** **

If the random variable X has probability density

$$f(x) = \begin{cases} 1+x, & -1 < x < 0 \\ 1-x & 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

(24)	P(X < 0.5) equals to							
	(A)	0.5	(B)	0.875	(C)	0.375	(D)	0.75
(25)	P(X	= 0.2) equals	s to					
	(A)	1.2	(B)	0.5	(C)	0.8	(D)	0

**** ****

The cumulative distribution function F(x) of a continuous random variable X is as follows:

$$F(x) = \begin{cases} 0, & x \le -1 \\ \frac{x^3 + 1}{9}, & -1 < x < 2 \\ 1, & x \ge 2 \end{cases}$$

(26)	P(-0.5 < X < 1.	P(-0.5 < X < 1.5) equals to					
	(A) 0.30	(B) 0.40	(C) 0.39	(D) 0.20			
(27)	$P(X \ge 0.6)$ equal	$P(X \ge 0.6)$ equals to					
	(A) 0.86	(B) 0.14	(C) 0.50	(D) 0.15			

>> >>

A random variable 'X' has E(X) = 2 and $E(X^2) = 8$. Another random variable 'Y' is related with X as follows:

$$Y = (3X + 5)/2.$$

(28)	The mean of Y	s:		
	(A) 2.0	(B) 6.0	(C) 8.5	(D) 5.5
(29)	The Variance of	Y is:		
	(A) 4.0	(B) 8.5	(C) 6.0	(D) 9.0

bb bb

A random variable 'X' has E(X) = 2, and variance = 4.

(30)	Then by Chebychev theorem, $P(-1 \le X \le 5)$ is					
	$(A) \geq 5/9$	(B) ≥ 4/9	(C) ≤ 5/9	(D) ≤ 4/9		

(1)
$$P(X < 4) = \int_{-\infty}^{4} f(x) dx = \int_{2}^{4} \frac{8}{2^{3}} dx$$

(2)
$$P(-1 < x < 4) = \int_{-1}^{4} f(x) dx = \int_{2}^{4} \frac{8}{x^{3}} dx$$

(3)
$$P(X75) = 1 - P(X55) = 1 - \int_{2}^{3} \frac{8}{23} dx$$

$$(4) \quad \mathcal{E}(x) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{2}^{\infty} \frac{3}{x^{2}} dx = -\frac{8}{2} \Big|_{2}^{\infty} = 0 - (-4)$$

(5)
$$P(x=5) = F(5) - F(3) = 1 - 0.56 = 0.44$$

$$= 1 - F(2) = 1 - 0.24$$

or =
$$P(x=3) + P(x=5)$$

 $F(3) - F(1) + F(5) - F(3)$

$$(7)$$
 $P(1.5 < x < 5) = F(5) - F(1.5) - f(5)$

(8)
$$P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)}$$

(10)
$$P(F) = P(F \cap C) + P(F \cap S) + P(F \cap E)$$

$$= \frac{17 + 45 + 50}{200} = \frac{112}{200} = 0.56$$
(11) $P(F \cap E) = \frac{50}{200} = 0.25$

(13)
$$P(T_2|S) = \frac{P(T_2) P(31T_2)}{P(S)}$$

$$(14) \quad P(A \cap B) = P(B) - P(A^c \cap B)$$

(16)
$$P(A^c|B) = \frac{P(A^c \cap B)}{P(B)}$$

(17)
$$P(B|A^c) = \frac{P(A^c \land B)}{P(A^c)}$$

(18)
$$P(A) = 0.8$$
, $P(B) = 0.5$, $P(AVB) = 0.9$
=7 $P(ANB) = 0.4 = P(A) P(B)$
A, B are independent

(19)
$$\frac{2}{x}$$
 $f(x) = 1$ $e(0+3) + e(0) + 3) + e(0) + 3) = 1$

(20)
$$f(x) = 0.1 \times 1$$
, $z = 1.2.3$, 4

$$P(X72) = P(X=3) + P(X=4)$$

$$= f(3) + f(4) = 0.3 + 0.4 = 0.7$$
(21) $M = Z \times f(x)$

$$= (1) (0.1) + (2) (0.2) + (3) (0.3) + 4 (0.4)$$
(22) $S^2 = E(X^1) - M^2$
(23) $\int_{-\infty}^{\infty} f(x) dx = 1$

$$\int_{-\infty}^{2} \frac{x^2}{3} dx = 1 = 7 \frac{x^3}{9} \Big|_{K}^{2} = 1$$
(24) $P(X < 0.9) = \int_{-\infty}^{0.5} f(x) dx$

$$= x + \frac{x^2}{2} \Big|_{-1}^{0} + x - \frac{x^2}{2} \Big|_{0}^{0.5}$$

$$= 0 + 1 - 0.5 + 0.5 - 0.125 = 0$$

(25)
$$P(X=0.2) = 0$$

$$= F(1.5) - F(-0.5)$$

$$= \frac{(1.5)^3 + 1}{9} - \frac{(-0.5)^3 + 1}{9} = \frac{3.5}{9} = 0.39$$

(27)
$$P(X7,0.6) = 1 - P(X<0.6)$$

= $1 - F(0.6)$
= $1 - \frac{(0.6)^3 + 1}{9} = 0.86$

(28)
$$E(Y) = E(\frac{3}{2}X + \frac{5}{2})$$

= $\frac{3}{2}E(X) + \frac{5}{2}$

$$P(-3 < x-2 < 3)$$
 $= 1-\frac{1}{k^2} = 1-\frac{4}{9}$
 $(-\frac{3}{2})(2) < x-2 < (\frac{3}{2})(2)$ $= \frac{1}{k^2} = \frac{1}{9}$