MIDTERM, SEMESTER I, 1445
 DEPT. OF MATHEMATICS, COLLEGE OF SCIENCE, KSU MATH: 280 FULL MARK: 25 TIME: 1H:30

Question $1[4+4]$

1) Show that $\sup \left\{\frac{2 n^{2}}{3 n^{2}+1}: n \in \mathbb{N}\right\}=\frac{2}{3}$.
2) Find $\sup (-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}$.

Question 2 [5] Define the sequence $\left(x_{n}\right)$ by

$$
x_{1}=1, \quad x_{n+1}=\sqrt{1+x_{n}}
$$

Show that $\left(x_{n}\right)$ is convergent and determine its limit.
Question 3[4+4+4]

1) Show that if a series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
2) Give an example of a convergent series which is not absolutely convergent.
3) Test the following series for convergence:

$$
\text { i) } \sum_{k=1}^{\infty} \frac{\sin k}{(1.001)^{k}}, \quad \text { ii) } \sum_{k=1}^{\infty} \frac{k^{2}+3}{4 k^{2}+5}, \quad \text { iii) } \sum_{k=1}^{\infty} \frac{e^{-k}}{k^{k}} \text {. }
$$

