Questions :

Q1: Find the first approximation of the point of intersection of the nonlinear equations $x^{2}+y^{2}=1$ and $\frac{1}{3} x^{2}+\frac{1}{2} y^{2}=1$ using Newton's method, starting with the initial approximation $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.

Q2: The equation $1-2 \cos (x)+\cos ^{2}(x)=0$ has the root $\alpha=0$. Develop the Modified Newton's formula for computing this root, then use it to find the second approximation by using the initial approximation $x_{0}=0.5$.

Q3: Show that the x -value of the intersection point (x, y) of the graphs $y=x^{3}+2 x-1$ and $y=\sin x$ is lying in the interval $[0.5,1]$. Then use Secant method to find its second approximation, when $x_{0}=0.5$ and $x_{1}=0.55$. Also, find the intersection point.

Q4: Convert the equation $x^{2}-3 x+2=0$ to the fixed-point problem

$$
x=\frac{1}{1+c}\left(c x+\frac{x^{2}+2}{3}\right),
$$

with c a constant. Find a value of c to ensure rapid convergence of the following scheme

$$
x_{n+1}=\frac{1}{1+c}\left(c x_{n}+\frac{x_{n}^{2}+2}{3}\right), \quad n \geq 0
$$

at $\alpha=1$. Compute the second approximation, starting with $x_{0}=0.5$.
Q5: To find approximation of root of quadratic equation $a x^{2}+b x+c=0$ we use the following iterative scheme

$$
x_{n+1}=\frac{b x_{n}^{2}+2 c x_{n}}{c-a x_{n}^{2}}, \quad n \geq 0
$$

Show that this iterative scheme is atleast quadratic if $c \neq 0$ and $a x^{2} \neq c$ at a root α. Use this iterative scheme to find the second approximation of the positive root of the equation $2 x^{2}-5 x=3$, starting with $x_{0}=2.5$.

Q1: Find the first approximation of the point of intersection of the nonlinear equations $x^{2}+y^{2}=1$ and $\frac{1}{3} x^{2}+\frac{1}{2} y^{2}=1$ using Newton's method, starting with the initial approximation $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.

Solution. We are given the nonlinear system

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\frac{1}{3} x^{2}+\frac{1}{2} y^{2} & =1
\end{aligned}
$$

and it gives the functions and the first partial derivatives as follows:

$$
\begin{aligned}
& f_{1}(x, y)=x^{2}+y^{2}-1, \quad f_{1 x}=2 x, \quad f_{1 y}=2 y, \\
& f_{1}(x, y)=\frac{1}{3} x^{2}+\frac{1}{2} y^{2}-1, \quad f_{2 x}=\frac{2}{3} x, \quad f_{2 y}=y .
\end{aligned}
$$

At the given initial approximation $x_{0}=1$ and $y_{0}=1$, we get

$$
\begin{aligned}
& f_{1}(1,1)=1, \quad \frac{\partial f_{1}}{\partial x}=f_{1_{x}}=2, \quad \frac{\partial f_{1}}{\partial y}=f_{1_{y}}=2 \\
& f_{2}(1,1)=-\frac{1}{6}, \quad \frac{\partial f_{1}}{\partial x}=f_{2_{x}}=\frac{2}{3}, \quad \frac{\partial f_{2}}{\partial y}=f_{2_{y}}=1
\end{aligned}
$$

The Jacobian matrix J and its inverse J^{-1} at the given initial approximation can be calculated as follows:

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
2 & 2 \\
\frac{2}{3} & 1
\end{array}\right) \quad \text { and } \quad J^{-1}=\frac{1}{2 / 3}\left(\begin{array}{rr}
1 & -2 \\
-\frac{2}{3} & 2
\end{array}\right) .
$$

Substituting all these values in the formula, we get the first approximation as follows:

$$
\binom{x_{1}}{y_{1}}=\binom{1}{1}-\frac{1}{2 / 3}\left(\begin{array}{rr}
1 & -2 \\
-\frac{2}{3} & 2
\end{array}\right)\binom{1}{-\frac{1}{6}}=\binom{-1}{2.5} .
$$

Q2: The equation $1-2 \cos (x)+\cos ^{2}(x)=0$ has the root $\alpha=0$. Develop the Modified Newton's formula for computing this root, then use it to find the second approximation by using the initial approximation $x_{0}=0.5$.

Solution. Since $\alpha=0$ is a root of $f(x)$, so

$$
\begin{array}{rlrl}
f(x) & =1-2 \cos (x)+\cos ^{2}(x)=(1-\cos (x))^{2}, & f(0) & =0 \\
f^{\prime}(x) & =2 \sin (x)(1-\cos (x)), & f^{\prime}(0) & =0 \\
f^{\prime \prime}(x) & =2 \sin ^{2}(x)-2 \cos ^{2}(x)+2 \cos (x), & f^{\prime \prime}(0) & =0, \\
f^{\prime \prime \prime}(x) & =4 \sin (2 x)-2 \sin (x), & f^{\prime \prime \prime}(0) & =0 \\
f^{(4)}(x)=8 \cos (2 x)-2 \cos (x), & f^{(4)}(0)=6 \neq 0,
\end{array}
$$

the function has zero of multiplicity 4. Using modified Newton's iterative formula, we get

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-4 \frac{\left(1-\cos \left(x_{n}\right)\right)^{2}}{2 \sin \left(x_{n}\right)\left(1-\cos \left(x_{n}\right)\right)} .
$$

Thus

$$
x_{n+1}=x_{n}-\frac{2\left(1-\cos \left(x_{n}\right)\right)}{\sin \left(x_{n}\right)}, \quad n \geq 0 .
$$

Now evaluating this at the give approximation $x_{0}=0.5$, gives

$$
x_{1}=x_{0}-\frac{2\left(1-\cos \left(x_{0}\right)\right)}{\sin \left(x_{0}\right)}=-0.0107
$$

and

$$
x_{2}=x_{1}-\frac{2\left(1-\cos \left(x_{1}\right)\right)}{\sin \left(x_{1}\right)}=1.0209 \times 10^{-7},
$$

are the required approximations.

Q3: Show that the x -value of the intersection point (x, y) of the graphs $y=x^{3}+2 x-1$ and $y=\sin x$ is lying in the interval $[0.5,1]$. Then use Secant method to find its second approximation, when $x_{0}=0.5$ and $x_{1}=0.55$. Also, find the intersection point.

Solution. Since there is an intersection, so $x^{3}+2 x-1=\sin x$ or $=x^{3}+2 x-\sin x-1=$ 0 . Thus we have the nonlinear function of the form

$$
f(x)=x^{3}+2 x-\sin x-1 .
$$

Note that

$$
f(0.5)=-0.3544 \quad \text { and } \quad f(1.0)=1.1585 .
$$

Since $f(x)$ is continuous on $[0.5,1.0]$ and $f(0.5) f(1.0)<0$, so that a x-value or root of $f(x)=0$ lies in the interval $[0.5,1.0]$.
Applying Secant iterative formula to find the approximation of this equation, we have

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{3}+2 x_{n}-\sin x_{n}-1\right)}{\left(x_{n}^{3}+2 x_{n}-\sin x_{n}-1\right)-\left(x_{n-1}^{3}+2 x_{n-1}-\sin x_{n-1}-1\right)}, n \geq 1 .
$$

Finding the second approximation using the initial approximations $x_{0}=0.5$ and $x_{1}=0.55$, we get

$$
x_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{3}+2 x_{1}-\sin x_{1}-1\right)}{\left(x_{1}^{3}+2 x_{1}-\sin x_{1}-1\right)-\left(x_{0}^{3}+2 x_{0}-\sin x_{0}-1\right)}=0.6606,
$$

and $f\left(x_{2}\right)=f(0.6606)=0.0473$, so

$$
x_{3}=x_{2}-\frac{\left(x_{2}-x_{1}\right)\left(x_{2}^{3}+2 x_{2}-\sin x_{2}-1\right)}{\left(x_{2}^{3}+2 x_{2}-\sin x_{2}-1\right)-\left(x_{1}^{3}+2 x_{1}-\sin x_{1}-1\right)}=0.6603 .
$$

Thus x -value of the intersection point is $x=0.6603$ and intersection point is $(0.6603,0.61)$.

Q4: Convert the equation $x^{2}-3 x+2=0$ to the fixed-point problem

$$
x=\frac{1}{1+c}\left(c x+\frac{x^{2}+2}{3}\right),
$$

with c a constant. Find a value of c to ensure rapid convergence of the following scheme

$$
x_{n+1}=\frac{1}{1+c}\left(c x_{n}+\frac{x_{n}^{2}+2}{3}\right), \quad n \geq 0
$$

at $\alpha=1$. Compute the second approximation, starting with $x_{0}=0.5$.
Solution. Given $x^{2}-3 x+2=0$ and it can be written as for any c

$$
x(c-c+1)=\frac{x^{2}+2}{3} \quad \text { or } \quad x(c+1)-x c=\frac{x^{2}+2}{3},
$$

or

$$
x(c+1)=c x+\frac{x^{2}+2}{3}
$$

From this we have

$$
x=\frac{1}{1+c}\left(c x+\frac{x^{2}+2}{3}\right)=g(x)
$$

and it gives the iterative scheme

$$
x_{n+1}=\frac{1}{1+c}\left(c x_{n}+\frac{x^{2}+2}{3}\right)=g\left(x_{n}\right), \quad n \geq 0
$$

For guaranteed the convergence will be rapid if

$$
g^{\prime}(1)=0, \quad \text { gives } \quad c=-\frac{2}{3}
$$

Thus, $c=g^{\prime}(1)=-\frac{2}{3}$. Now to find two iterates we have

$$
\begin{aligned}
& x_{1}=\frac{1}{1+c}\left(c x_{0}+\frac{x_{0}^{2}+2}{3}\right)=1.25 \\
& x_{2}=\frac{1}{1+c}\left(c x_{1}+\frac{x_{1}^{2}+2}{3}\right)=1.0625
\end{aligned}
$$

the required approximations at the value of $c=-\frac{2}{3}$.

Q5: To find approximation of root of quadratic equation $a x^{2}+b x+c=0$ we use the following iterative scheme

$$
x_{n+1}=\frac{b x_{n}^{2}+2 c x_{n}}{c-a x_{n}^{2}}, \quad n \geq 0
$$

Show that this iterative scheme is atleast quadratic if $c \neq 0$ and $a x^{2} \neq c$ at a root α. Use this iterative scheme to find the second approximation of the positive root of the equation $2 x^{2}-5 x=3$, starting with $x_{0}=2.5$.

Solution. Since

$$
f(x)=x-g(x)=0,
$$

therefore, we have

$$
c x-a x^{3}=b x^{2}+2 c x
$$

or

$$
a x^{3}+b x^{2}+c x=0 .
$$

Thus

$$
x\left(a x^{2}+b x+c\right)=0 .
$$

For $x \neq 0$, we have the quadratic equation, $a x^{2}+b x+c=0$.
Since

$$
g(x)=\frac{b x^{2}+2 c x}{c-a x^{2}}
$$

and

$$
g^{\prime}(x)=\frac{2 c\left(a x^{2}+b x+c\right)}{\left(c-a x^{2}\right)^{2}}
$$

At root $\alpha, a x^{2}+b x+c$ is identically zero and $g^{\prime}(\alpha)=0$ if $c-a \alpha^{2} \neq 0$.
Finding the first two approximations of the positive root of $2 x^{2}-5 x=3$ using the initial approximation $x_{0}=2.5$ and $a=2, b=-5, c=-3$, we use the above iterative scheme by taking $n=0,1$ as follows

$$
x_{1}=\frac{b x_{0}^{2}+2 c x_{0}}{c-a x_{0}^{2}}=2.9839,
$$

and

$$
x_{2}=\frac{b x_{1}^{2}+2 c x_{1}}{c-a x_{1}^{2}}=2.99999
$$

are the possible two approximations.

