

Student's Name	Student's ID	Group No.

Question No.	Ι	II	III	IV	V	Total
Mark						

1. If p^* approximates $p = \pi^5$ with relative error at most 10^{-3} , then $p^* \in [\pi^5 - 10^{-3}, \pi^5 + 10^{-3}]$ ()
--

2. The rate of convergence for $\frac{n^2+4}{n^3+n}$ as $n\to\infty$ is $O(\frac{1}{n^2})$

3. If $f(h) = \frac{\sin h}{h}$, then $f(h) = 1 + O(h^2)$

()

)

(

4. If 3-digit rounding is used to evaluate $g(x) = x^3 + 4.2x$ at $x = 1.34$, then $g(1.34) = 8.02$ ()	
--	---	--

[II] Use the Bisection method to find the root of $sin(x) - e^{-x}$ on [0, 1] accurate to within 10^{-2} [3 Points]

[III] Approximate $\sqrt{7}$ using Newton's method with $p_0 = 2.5$ and accuracy 10^{-4} (Hint: Let $f(x) = x^2 - 7$) [3 Points]

[IV] Let $f(x) = x^3 - x - 1$ [5 Points]

i. If f(p) = 0, show that $g_1(x) = \sqrt[3]{x+1}$ and $g_2(x) = x^3 - 1$ both have a fixed point at p

ii. **Prove** that g_1 has a unique fixed point on [1, 2]

iii. Starting with $p_0 = 1.4$, use a fixed-point iteration on g_1 to determine the root p of f on [1, 2] accurate to within 10^{-3}

[V] Let $f(x) = (x-2)^2 - lnx$ for $1 \le x \le 2$. Staring with $p_0 = 1$ and $p_1 = 1.5$, find p_3 by

- i. The Secant method
- ii. The method of False Position
- iii. Which method gives a better approximation for the root of f? Justify your answer