MATH 352 (Numerical Analysis)
First Midterm Exam
Duration: $1 \frac{1}{2}$ Hours

Student's Name	Student's ID	Group No.

Question No.	I	II	III	IV	V	Total
Mark						

[I] Determine whether the following is True or False. Justify your answer.
[4 Points]

1. If p^{*} approximates $p=\pi^{5}$ with relative error at most 10^{-3}, then $p^{*} \in\left[\pi^{5}-10^{-3}, \pi^{5}+10^{-3}\right]$
2. The rate of convergence for $\frac{n^{2}+4}{n^{3}+n}$ as $n \rightarrow \infty$ is $O\left(\frac{1}{n^{2}}\right)$
3. If $f(h)=\frac{\sin h}{h}$, then $f(h)=1+O\left(h^{2}\right)$
4. If 3 -digit rounding is used to evaluate $g(x)=x^{3}+4.2 x$ at $x=1.34$, then $g(1.34)=8.02$
[II] Use the Bisection method to find the root of $\sin (x)-e^{-x}$ on $[0,1]$ accurate to within 10^{-2}
[III] Approximate $\sqrt{7}$ using Newton's method with $p_{0}=2.5$ and accuracy 10^{-4} (Hint: Let $\left.f(x)=x^{2}-7\right)$
[IV] Let $f(x)=x^{3}-x-1 \quad[5$ Points]
i. If $f(p)=0$, show that $g_{1}(x)=\sqrt[3]{x+1}$ and $g_{2}(x)=x^{3}-1$ both have a fixed point at p
ii. Prove that g_{1} has a unique fixed point on $[1,2]$
iii. Starting with $p_{0}=1.4$, use a fixed-point iteration on g_{1} to determine the root p of f on $[1,2]$ accurate to within 10^{-3}
[V] Let $f(x)=(x-2)^{2}-\ln x$ for $1 \leq x \leq 2$. Staring with $p_{0}=1$ and $p_{1}=1.5$, find p_{3} by
i. The Secant method
ii. The method of False Position
iii. Which method gives a better approximation for the root of f ? Justify your answer
