CHEM 102 SYLLABUS

Text book: Raymond Chang, Chemistry, 10th edition, 2010

Topics	Text book	Numb	er of
	pages	Lect	ures
Chapter 7: Quantum Theory and the Electronic Structu	re of Atoms		
 7.1 From Classical Physics to Quantum Theory: Speed, length, frequency, number of the waves of light, Electromagnetic radiation, Plank's equation (The quantization of light energy) 7.2 The photoelectric Effect (The matter nature of light) <i>Exercises</i> 	276- 282	2	3
7.3 Bohr's theory for hydrogen atom: Emission spectra, emission spectrum of hydrogen atom Assumptions <i>Exercises</i>	282-287	1	
7.4 The dual nature of electrons: De Broglie hypothesis			
7.5 Quantum mechanics : Heisenberg principle, Quantum mechanics of the hydrogen atom <i>Exercises</i>	288-294	1	
7.6 Quantum numbers : The principle quantum number, the angular momentum quantum number, the magnetic quantum number, the electron spin quantum number, Exercises	294-296	1	
7.7 Atomic orbitals: s, <i>p</i> , <i>d</i> , orbitals, energy of ng up, or n + <i>l</i> principle) <u>Exercises</u>	297-300	1	5
7.8 Electron configurations: The Pauli exclusion, principle diamagnetism and para magnetism. the shielding effect of many-electron atoms, Hund's rule, general rules for assigning electron to atomic orbitals <u>Exercises</u>	300 - 307	1	
7.9 The building-up principal: The Aufbau principle, building irregularities of configurations in transition elements <i>Exercises</i>	307-309	1	
Chapter 8: Periodic Relationship Among the Elements			
8.2 Periodic classification of elements : Representing free elements in chemical equation, electron configuration of cations and anions <i>Exercises</i>	326-330	3	
 8.3 Periodic variation in physical properties of elements: Effective nuclear charge, atomic radius, ionic radius 8.4 Ionization energy 8.5 Electron affinity <u>Exercises</u> 	331- 343	1	4

Topics	Text book	Nun	iber of
- F ···	pages	lec	tures
Chapter 9: Chemical Bonding I			
 9.1 Lewis dot symbols 9.2 The ionic bond 9.3 Lattice energy of ionic compounds: The Born-Haber cycle for determining lattice energy, lattice energy and the formula of ionic 	366 367-369 369-374	2	
<pre>compounds, 9.4 The covalent bond <u>Exercises</u></pre>	374-377		
9.5 Electronegativity: Electronegativity and oxidation numbers <u><i>Exercises</i></u>	377-380	1	
9.6 Writing Lewis Structures 9.7 Formal charge and Lewis structure <u>Exercises</u>	380 - 386	1	6
9.8 The concept of resonance <u>Exercises</u> 9.9 Exceptions to the Octet Rule: The incomplete octet, odd-electron molecules, the expanded octet <u>Exercises</u>	386 - 398	2	
9.10 Bond energy (enthalpy) <u>Exercises</u>			
FIRST MIDTERM EXAM			I
Chapter (10): Chemical Bonding II. Molecular geometratomic orbitals	ry and hybrid	dizatio	n of
10.1 Molecular geometry: Molecules in which the central atom has no lone pairs, geometry of molecules with more than one central atom, guidelines for applying the VSEPR model10.2 Dipole MomentExercises	410 - 424	1	
 10.3 Valence bond theory 10.4 Hybridization of atomic: sp ³, sp², and sp hybridization, procedure for hybridizing atomic orbitals, hybridization of <i>s</i>, <i>p</i> and <i>d</i> orbitals Exercises 	424 – 436	2	5
 10.5 Hybridization in molecules 10.6 Molecular orbital theory: Bonding and antibonding molecular orbitals <i>Exercises</i> 	437 - 443	1	
10.7 Molecular orbital configurations: Rules governing molecular electron configuration and stability, hydrogen and helium molecules, homonuclear diatomic molecules of second-period	443-452	1	

elements, the lithium molecule, the carbon molecule, the oxygen molecule 10.8 Delocalized molecular orbitals: Benzene molecule, the carbon ion <u>Exercises</u>			
Chapter (5): Gases			
5.7 The kinetic molecular theory of gases:(chapter 5)5.8 Deviation from the ideal gas	203-204 211-213	1	
Chapter (11): Intermolecular forces and liquids and solids			
 11.1 The kinetic molecular theory of liquids and solids 11.2 Intermolecular forces: Dipole-dipole forces, ion-dipole forces, dispersion forces, hydrogen bond 11.3 Properties of liquids: Surface tension, viscosity, the structure and properties of water Exercises 	462-472	2	3

Topics	Text book pages	Numl lect	ber of ures
Chapter (13) Chemical Kinetics			
13.1The rate of a reaction: Reaction of molecular bromine and formic acid, decomposition of hydrogen peroxide, reaction rate and			
stoichiometry 13.2 The rate low			
13.3The relation between reactant concentration and time: First order reaction (only)			
13.4 Activation energy and temperature dependence of rate constant: The collision theory of chemical kinetics, the Arrhenius equation	558-5576	3	5
13.5 Reaction mechanisms : rate laws and elementary steps. experimental support for reaction mechanisms	582-549		
13.6 catalysis: Heterogeneous catalysis (only)	594-596		
<u>Exercises</u>			
SECOND MIDTERM EXAM (10 GRADS)			

Chapter (14)Chemical equilibrium			
 14.1 The concept of equilibrium and the equilibrium constant: The equilibrium constant 14.2 Writing equilibrium constant expressions: Homogenous equilibrium, equilibrium constant and units, Heterogenous equilibrium, multiple equilibrium, the form of K and the equilibrium equation, summary of guidelines for writing equilibrium constant expressions <u>Exercises</u> 	616 – 630	2	
 14.3 The relationship between chemical kinetics and chemical equilibrium 14.4 What does the equilibrium constant tell us?: Predicting the direction of a reaction, calculating equilibrium concentration <u>Exercises</u> 	630 – 637	2	5
14.5 Factors that affect chemical equilibrium: Le chateliers principle, changes in concentration, changes in volume and pressure, changes in temperature, the effect of a catalyst, the summary of factors that may affect the equilibrium position <u>Exercises</u>	638 - 645	1	

Topics	Text book pages	Num lect	oer of ures
Chapter (4) Reactions in aqueous solutions			
4.4 Oxidation -reduction Reaction: Oxidation numbers	135-139	1	1
Exercises			
Chapter (19) Oxidation-reduction reactions (Redox read	ctions)		
19.1 Redox Reaction: Balancing redox reactions	838-840	1	1
<u>Exercises</u>			
Chapter (15) Acid and bases			
15.1 Brønsted Acids and Bases			
15.2 The Acid-Base properties of water: The ion product of water	660 - 666	1	
15.3 pH—A Measure of Acidity			
Exercises			6
15.4 Strength of Acids and Bases			U
15.5 Weak acids and acid ionization constants: The quadratic	666 - 681	2	
equation, percent ionization			
15.6 Weak bases and base ionization constants			

15.7 The relationship between the ionization constants of acids and their conjugate bases			
<u>Exercises</u>			
 15.9 Molecular structure and the strength of acids: Hydrohalic acids, oxoacids, carboxylic acids 15.10 Acid-Base properties of salts: Salts that produce neutral solutions, salts that produce basic solutions, salts that produce Acidic solutions, salts in which both the cation and the anion hydrolyze 15.11 Acid-Base properties of oxides and hydroxides: Basic and amphoteric hydroxides 15.12 Lewis acids and bases 	685 - 701	3	
TOTAL HOURS	42	4	2

Distribution of the 100 grades over semester:

	Grades	
Practical		30
1 st midterm	15	20
2 nd midterm	15	
Final exam		40
Total		100

FINAL EXAM WILL BE IN ALL TOPICS

الاختبار النهائي سيكون في جميع مواضيع المقرر