Metals Part 2

Manufacturing Materials IE251 Dr . M. Eissa K S University

METALS

- 1. Alloys and Phase Diagrams
- 2. Ferrous Metals
- 3. Nonferrous Metals
- 4. Superalloys
- 5. Guide to the Processing of Metals

Non Ferrous Metals

Nonferrous Metals

Metal elements and alloys not based on iron

- Most important nonferrous metals are aluminum, copper, magnesium, nickel, titanium, and zinc, and their alloys
- Although not as strong as steels, certain nonferrous alloys have corrosion resistance and/or strength-to-weight ratios that make them competitive with steels in moderate to high stress applications
- Many nonferrous metals have properties other than mechanical that make them ideal for applications in which steel would not be suitable

Aluminum and Magnesium

- Aluminum (AI) and magnesium (Mg) are light metals
 - They are often specified in engineering applications for this feature
- Both elements are <u>abundant on earth</u>, <u>aluminum on land</u> and <u>magnesium in the sea</u>
 - Neither is easily extracted from their natural states
- Principal ore is *bauxite* mostly <u>hydrated aluminum oxide</u> (Al₂O₃-H₂O) + other oxides

Aluminum

• Properties

- 1/3 the weight of steel
- Corrosion resistant

– Easy to fabricate

Aluminum

- Good electrical conductor
- Many alloy combinations
- High heat and light reflectivity
- Takes a good natural finish

Aluminum

- Forms of aluminum products
 - Cast
 - Accurate to within ±0.001"
 - Wrought
 - This means the aluminum has been rolled or worked after casting

SECTION TYPE	CCD mm	THICKNESS mm	SHAPE FACTOR
L	142	2.5	300
L	70	1.5	500
I	112	5.0	152
	142	SOLID	15
	70	SOLID	30
0	50	3.0	247
Ō	50	1.5	494
	210	3.0	190
ШШШ	210	2.0	285
шш	140	2.0/6.0	183
	40	2.0/1.5	430
TALAT Shape	Factor Values 🕫	APLEATOR- PURP	I302.01.07

PURE ALUMINIUM				
Annealed pu	re aluminium	Typical mechan	ical pro	perties are:
• not ve	ry strong	A	nnealed	l Moderate cold work
 soft an light i 	nd ductile n weight	0.2% Yield Strength	15 MPa	50 MPa
 corros of high 	sion resistant	UTS	50 MPa	100 MPa
and el	ectrical	Elongation †	50%	50%
condu	cuvities	Hardness	1 30 Hv	230 Hv
		† maximum elongati	on before l	oreaking
TALAT	Some o pure al	characteristics of uminium		1201.01.01

REQUIRED CHARACTERISTIC	ALLOYING ELEMENT	PRODUCT
LOWER MELTING POINT	Si	BRAZING SHEET, FOIL
INCREASED CONDUCTIVITY	В	CONDUCTOR STRIP
INCREASED ELASTIC MODULUS	Li	AEROSPACE SHEET
DECREASED DENSITY	Li	AEROSPACE SHEET
STRESS CORROSION RESISTANCE	Cr, Zr, Ag	AIRCRAFT SHEET
SACRIFICIAL CORROSION	Zn	HEAT EXCHANGERS CLAD PRODUCTS
VACUUM BRAZING RESPONSE	Mg	HEAT EXCHANGERS
RESPONSE TO CHEMICAL or ELECTROCHEMICAL TREATMENT	Si, Cu, Cr	DECORATIVE APPLICATIONS

Some Alloying Elements Employed to Give Special Characteristics

1XXX	Aluminium of 99% minimum purity
2XXX	Aluminium and copper alloys
3XXX	Aluminium and manganese alloys
4XXX	Aluminium and silicon alloys
5XXX	Aluminium and magnesium alloys
6XXX	Aluminium, Mg and Si alloys
7XXX	Aluminium, Zn and Mg alloys
8XXX	other alloys (eg. aluminium lithium).

Each alloy is described by a four digit number plus a further letter and number indicating the temper or condition.

International Nomenclatur for Wrought Aluminium Alloys

1101.02.03

	_	K TONNES	
CANS		2,013	
OTHER PAC	KAGING	361	
ROAD VEHIC	CLES	298	
RESIDENTIA	L SIDING	190	
OTHER BUIL	DING	155	
AIR CONDITI	IONERS / APPLIANCES	140	
HOUSEHOLE	0 & FOIL	133	
AIRCRAFT P	LATE	110	
AIRCRAFT S	HEET	96	
COOKING UT	TENSILS	50	
LITHOGRAPI	HIC SHEET	50	
MOBILE HOM	MES	35	
Source: Aluminum Association			
TALAT att	1990 Sheet, Plate & Foil Markets by Product Type (N. America)	1301.01.02	

ALLOY	APPLICATION		
	WORK-HARDENING ALLOYS		
1060 1100 3003, 3004	CHEMICAL EQUIPMENT, TANKERS. COOKING UTENSILS, DECORATIVE PANELS. CHEMICAL EQUIPMENT, STORAGE TANKS, BEVERAGE CAN BODIES	5.	
5005, 5050 5052, 5657	AUTOMOTIVE TRIM, ARCHITECTURAL APPLICATIONS.		
5085, 5086 5454, 5456 5182, 5356	5, 5086 MARINE STRUCTURES, STORAGE TANKS, RAIL CARS. 4, 5456 PRESSURE VESSELS, ARMOUR PLATE. 2, 5356 CYROGENIC TANKS, BEVERAGE CAN ENDS.		
	HEAT TREATABLE ALLOYS		
2219 2014, 2024	HIGH TEMPERATURE (eg high speed aircraft). AIRFRAMES, AUTOBODY SHEET.		
6061, 6063 6082, 6351 6009, 6010	6061, 60636082, 63516009, 6010AUTOBODY SHEET.		
7004, 7005 7019, 7039	7004, 7005 7019, 7039 MISSILES, ARMOUR PLATE, MILITARY BRIDGES.		
7075, 7079, 7050, 7010, 7150	AIRFRAMES, TOOLING PLATE.		
TALAT	Typical Applications of some Aluminium Sheet & Plate Alloys	01.01.06	

Magnesium and Its Alloys

- Lightest of the structural metals
- Available in both wrought and cast forms
- Relatively easy to machine
- In all processing of magnesium, <u>small particles</u> of the metal (such as small metal cutting chips) <u>oxidize</u> <u>rapidly</u>, and care must be taken to avoid fire hazards

lpod case

Properties of Magnesium

- As a pure metal, magnesium is <u>relatively soft</u> and <u>lacks sufficient strength</u> for most engineering applications
- However, it can be alloyed and heat treated to achieve strengths comparable to aluminum alloys
- In particular, its <u>strength-to-weight</u> ratio is an advantage in *aircraft* and *missile* components

Copper

One of the oldest metals known to mankind

Good electrical

conductor - commercially pure copper is widely used as an electrical conductor

Also an excellent thermal conductor

 One of the *noble metals* (gold and silver are also noble metals), so it is corrosion resistant

Copper Alloys

- Strength and hardness of copper is <u>relatively</u> <u>low</u>; to improve strength, copper is frequently alloyed
- Bronze alloy of copper and tin (typical ~ 90% Cu, 10% Sn), widely used today and in ancient times (i.e., the *Bronze Age*)
- Brass alloy of copper and zinc (typical ~ 65% Cu, 35% Zn).
- <u>Highest strength alloy</u> is <u>beryllium-copper</u> (only about 2% Be), which can be heat treated to high strengths and used for springs

Coins?!

What are the coins made of?

The Australian 10 cent coin is roughly the same size as a US Quarter.

And an Australian 5 cent coin is roughly the size of a US Dime.

Dimes are made out of an alloy of 91.67 percent copper and 8.33 percent nickel (before 1965, the dime was made out of silver).

Nickel and Its Alloys

- Similar to iron in some respects:
 - Magnetic
 - Modulus of elasticity $\cong E$ for iron and steel
- Differences with iron:
 - Much more corrosion resistant widely used as
 - 1. an <u>alloying element</u> in steel, e.g., *stainless steel*,
 - 2. as a <u>plating metal</u> on metals such as plain *carbon steel*
 - High temperature properties of Ni alloys are superior

Nickel Alloys

Alloys of nickel are commercially important and are noted for <u>corrosion</u> <u>resistance and</u> <u>high temperature</u> <u>performance</u>

- In addition, a number of superalloys are based on nickel
- Applications: <u>stainless steel alloying ingredient</u>, <u>plating</u> <u>metal for steel</u>, applications requiring high temperature and corrosion resistance

Titanium and Its Alloys

- •<u>Abundant in nature</u>, constituting $\sim 1\%$ of earth's crust (aluminum is $\sim 8\%$)
- Density of Ti is between <u>aluminum and iron</u>

Importance has grown in recent decades due to its <u>aerospace applications</u> where its light weight and good strength-to-weight ratio are exploited

Properties of Titanium

- <u>Coefficient of thermal expansion</u> is relatively low among metals
- Stiffer and stronger than AI
- Retains good strength at elevated temperatures
- <u>Pure Ti is reactive</u>, which presents <u>problems in</u> processing, especially in molten state
- At room temperature Ti forms a thin adherent oxide coating (TiO₂) that provides excellent corrosion resistance

Properties of Titanium

Applications of Titanium

In the commercially pure state, Ti is used for corrosion resistant components, such as marine components and prosthetic implants

 Titanium alloys are used as <u>high</u> strength components at temperatures ranging up to above <u>550°C</u> (1000°F), especially where its excellent <u>strength-to-weight ratio</u> is exploited

Examples: aircraft and missile components

Alloying elements used with titanium include aluminum, manganese, tin, and vanadium

Summary

Nonferrous Metals

- Aluminum
- Copper
- Magnesium
- Nickel
- Titanium
- Zinc

Aluminum Alloys

- Abundantly Available on Land (Bauxite)
 - ~ 8% of earth's crust
- Light Weight
- More complex ore extraction than steel
- Excellent Thermal & Electrical Conductor
- Great Corrosive Resistance
- Easily Formed

Aluminum Designations

Major Alloy	Wrought Code	Cast Code
99%+ Pure	1XXX	1XX.X
Copper	2XXX	2XX.X
Manganese	3XXX	
Si + Cu +/- Mg		3XX.X
Silicon	4XXX	4XX.X
Magnesium	5XXX	5XX.X
Magnesium & Si	6XXX	
Zinc	7XXX	7XX.X
Tin		8XX.X
Other	8XXX	9XX.X

7

Magnesium Alloys

- Mined from sea-water
- Lightest of the structural alloys
- Easy to machine
- Small Mg particles easily oxidize
 - Fire hazard
- 3 to 5 alpha code alloy designation

Copper Alloys

- One of the Oldest Metals Known
 - ~ 6000 B.C.
- Found in naturally & extracted from ore
 - Chalcopyrite (CuFeS₂)
- One of the lowest electrical resistivities
- Noble metal (corrosive resistant)
- Low strength & hardness
- Bronze when alloyed with Tin
- Brass when alloyed with Zinc

Nickel Alloys

- Similar strength to iron
- More corrosive resistant than iron
- Commonly used as an alloying element with iron
- Extracted from pentlandite ((NiFe)₉S₈)

Titanium Alloys

- Fairly abundant in nature
 - ~ 1% of earth's crust
- Principle ores:
 - Rutile TiO₂
 - Ilmenite FeO & TiO₂
- Good strength to weight ratio
- Relatively low thermal expansion
- Stiffer & stronger than aluminum
- Good hot hardness
- Excellent corrosion resistance

Superalloys

Superalloys

- High-performance alloys designed to meet demanding requirements for strength and resistance to surface degradation at high service temperatures
- Many superalloys contain <u>substantial amounts</u> of three or more metals, rather than consisting of one base metal plus alloying elements
- Commercially important because they are <u>very</u> <u>expensive</u>
- Technologically important because of their <u>unique properties</u>

Why Superalloys are Important

- <u>Room temperature strength</u> properties are good but <u>not outstanding</u>
- <u>High temperature</u> performance is <u>excellent</u> tensile strength, creep resistance, and corrosion resistance at very elevated temperatures
- <u>Operating temperatures</u> often around <u>1100°C</u> (2000°F)
- Applications: gas turbines jet and rocket engines, steam turbines, and nuclear power plants (all are systems in which operating efficiency increases with higher temperatures)

Three Groups of Superalloys

- 1. Iron-based alloys in some cases iron is less than 50% of total composition
 - Alloyed with Ni, Cr, Co
- 2. Nickel-based alloys better high temperature strength than alloy steels
 - Alloyed with Cr, Co, Fe, Mo, Ti
- 3. Cobalt-based alloys ~ <u>40% Co and ~ 20%</u> <u>chromium</u>
 - Alloyed with Ni, Mo, and W
- In virtually all superalloys, including iron based, strengthening is by precipitation hardening

Manufacturing Processes for Metals

Manufacturing Processes for Metals

- Metals are shaped by all of the basic shaping processes: casting, powder metallurgy, deformation, and material removal
- In addition, <u>metal parts are joined to form</u> <u>assemblies</u> by welding, brazing, soldering, and mechanical fastening
- <u>Heat treating</u> is used to <u>enhance properties</u>
- Finishing processes (e.g., electroplating and painting) are commonly used to improve appearance of metal parts and/or to provide <u>corrosion protection</u>

How to Enhance Mechanical Properties

- Alloying to increase strength of metals
- Cold working strain hardening during deformation to increase strength (also reduces ductility)
 - Strengthening of the metal occurs as a byproduct of the forming operation
- Heat treatment <u>heating and cooling cycles</u> performed on a metal to beneficially <u>change</u> its <u>mechanical properties</u>
 - Operate by altering the microstructure of the metal, which in turn determines properties