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Abstract. The meshless reconstruction of the support of a three-dimensional volumetric source from a single 
pair of exterior boundary Cauchy data is investigated. The underlying potential satisfying the Laplace equation 
is sought as a discretised single-layer boundary integral representation but with sources relocated outside the so
lution domain, as in the method of fundamental solutions (MFS). The unknown source domain is parametrised 
by the radial coordinate, as a function of the spherical angles. The resulting least-squares functional estimating 
the gap between the measured and the computed data is minimized using the 1 sqnonl in toolbox routine in 
Matlab. Numerical results are presented and discussed for both exact and noisy data. 

Introduction 

In this paper, the aim is to reconstruct numerically in a stable and accurate manner the support of a volu
metric source by employing a combined meshless technique with nonlinear optimization which have recently 
been developed by the authors, [1], in two-dimensions. 

We consider the inverse problem of determining the support O2 C 0 C IR3 of an unknown volumetric 
source of unit intensity in the Laplace equation 

(L) 

where X(02) denotes the characteristic function of the domain 02 and u is the potential. We assume that the 
domains 0 and 02 are bounded with smooth boundaries and that 01 := 0\02 is connected. By defining 

(2) 

equation (1) can be rewritten as the following transmission problem: 

\72
ul = 0 in 0 1, (3) 

\72
u2 = 1 in n2, (4) 

U1 = U2, 
aU1 
an 

aU2 
an 

on a02. (5) 

where!! denotes the outward unit normal to the boundary. 
We also prescribe one pair of Cauchy boundary data on a~, namely, 

aUl
j, an = 9 on an. (6) 

We have the following uniqueness theorem in the class of star-shaped domains, [2]. 
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Theorem 1. The inverse problem (3)-(6) has at most one solution O2 in the class ofstar-shaped domains. 
The next task is to reconstruct the source domain 02 numerically. Recently, the MFS has proved, [1,3], 

easy to use in detecting cavities, rigid inclusions, as well as inhomogeneities in inverse geometric problems. 
In this paper, we investigate yet another application of the MFS to reconstruct the source domain O2 from the 
Cauchy data (6). 

In the next section we describe the MFS, as well as the nonlinear minimization proposed for reconstructing 
the star-shape support of the unknown source. 

The method of fundamental solutions (MFS) 

Prior to applying the MFS, we need to move the right-hand side inhomogeneity in (4) to the boundary 
conditions (5) and (6). For this, we decompose 

(7) 

where the homogeneous part uq satisfies 

(8) 

With the superposition (7), the transmission interface conditions (5) become 

(9) 

On applying the MFS we approximate the solutions Ul and u~ of the Laplace equations (3) and (8) by finite 
linear combinations of fundamental solutions of the form, [4], 

2 N M 

Ul,2NM(;r) = I:I:I:af.jG(;r,~j), x E 0 1 , (10) 
8=1 i=1 j=1 

N M 

U~,NM(;r) = I:I:bi,jG(;r,s;J), x E 02, (II) 
i=1 j=1 

where a = (af.j )i=IJV,j=1.M,8=1,2 and b (bi,j )i=IJV,j=1.M are unknown coefficients to be determined, 


(i~j)i=IJV,j=1,M,8=1,2 are source points located outside the annular domain 01. 


(~j)i=IJV,j=1,M are source points located outside the domain 02, and G is the fundamental solution of the 

three-dimensional Laplace equation given by, 


1 
(12) 

The source points (ii,j\=IJV,j=1.M rt. 0 are placed on a (fixed) dilated pseudo-boundary an' of similar 

shape as aO. The remaining source points (~i,j) '=p '=f'"T7 E O2 and (~i,j) '_P '-1 M rt. 02 are placed on-2 t 1.,1V,) 1.,lVJ ::!.3 t-l,1V,)-, 

contraction and dilation (moving) pseudo-boundaries a02 and aO~ similar to a02 at a distance <5 > 0 in the 
inward and outward directions, respectively. 

Without loss of generality, we may assume that the domain 0 is the unit sphere 8(0; 1). We also assume 
that the unknown support O2 is star-shaped with respect to the origin, i.e. 

a0 2 = {r(O, ¢)( cos(O) sin(¢), sin(O) sin(¢), cos(¢)) 10 E [0, 21T), ¢ E [0, 1T) }, (13) 
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! 	 where r is a smooth function with values in (0, 1). In this setup of particular domains 11 and n2, the collocation 
and source points are uniformly distributed, as follows: 

XL (cos(Oi) sin(¢j), sin(Od sin(¢]), cos(rPj)), 

xl,j r(Oi,¢j)( COS(Oi)sin(¢j),sin((}i)sin(¢j),cos(¢j)), i = j l,Af, ( 14) 

i~,l = R( COS(O-k) sin(¢t),sin(O-k) sin(¢e),cos(¢e)), {~,l = (1- o)Xk,g, 

s:.;'£=(I+o)X~,b k 1,N,e I,M, (15) 

where 

OJ = 27ri/N, i l,N, <Pj 7rj/M, j = , 


8k = 27rk/N, k =, ¢e = rrf/M, f = 1, M, 

ri.j r(Oi' ¢j) for i 1, N, j = 1, M, R > 1 and t5 E (0,1). 
The unknown radii vector r (ri,j)i=l,N,i=l.M' characterising the star-shaped support 112, together with 

the unknown MFS coefficients a and b, giving the approximations of the solutions U1 and U2, are simulate
neously determined by imposing the transmission conditions (9) and the Cauchy data (6) at the collocating 
points (14) in a least-squares sense. This results into minimizing the following (regularized) least-squares 
nonlinear objective function: 

2 2 
Ul e 

2 
h 1:r12

T(a,b,r):= Ul f + --g + U1- U 2 - 

£2(00) £2(00) 
an 6 

(16) 

where A 2:: ais a regularization parameter to be prescribed. In (16), gil is a noisy perturbation of the exact data 

9 given by 

(17) 

where p represents the percentage of noise and Pi,j is a pseudo-random noisy variable drawn from a uniform 
distribution in [-I, 1] using the MATLAB © command 1+2 * rand (1, NM), and 

N'L'LM ( ri,j - r;;1,j )2 , (18) 
. 2 . 2rr/
t= J=1 

The minimization of the functional (16) is performed using the Matlab toolbox routine lsqnonlin which 
does not require the user to provide the gradient and, in addition, it offers the option of imposing lower and 
upper bounds on the vector of unknowns (a, b, r). 

Numerical results and discussion 

In all numerical experiments, the initial guess for the unknown vectors a and bare 0, and the initial 
guess for !h is a sphere centred at the origin of radius 0.7. The Matlab toolbox routine lsqnonlin was 
run iteratively until a user-specified tolerance of XTOL 10-6 was achieved, or until when a user-specified 
maximum number of iterations M AXCAL = 1000 x 4M N was reached. We have also set the simple bounds 
on the variable (a, b,r) as the box [_lOlO, lOlOFNM X lOlO,lOlO]NM X (D,I)NM. The choices of the 
regularization parameter A in (16) was based on trial and error. 

We consider retrieving a sphere centred at the origin of radius Ro 0.5. That is, we seek the star-shape 
lpproximation (13) for the spherical radius function 

r(O, ¢) Ro = D.5, 0 E [D,2rr), ¢ E [0,11'). 	 (19) 
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We then tnke tile annlytical solutions of the equations (3)-(5) and (8) to be given by 

R'2 
60 (r, 0, rJ;) E (Ro, 1) x [0,271') X [0,71'), (20)u'l(r,O,rJ;) 

r2 

u2(r, B) = 6 
 (I', B, rJ;) E (Ro, 1) x [0,271') X [0,71'), (21) 

(r,B,rJ;) E (Ro,l) x [0,271') x [0,71'). (22)
3 

Bnsed on (20), the input Cauchy data (6) are given by 

R2 R3 
LLl(l, 0, rJ;) = /(0, rJ;) = f 30, 0 E [0,271'), rJ; E [0,11"), (23) 

aUI, R8
(1,0, q;) g(O, rJ;) = 3' () E [0,271'), ¢ E [0,11"), (24) 

and the transmission interface conditions (9) become 

h 1'2(0, rJ;) 
111 ( r(B, rJ;), B, rJ; ) = u2(r(B, rJ;), 0, rJ;) + 6 ' BE [0,271'), rJ; E [0,11"), (25) 

aUI ( ) au~ r(B, rJ;)
1'(0, rJ;), B, rJ; an (r(B, rJ;), B, rJ;) + -3-' BE [0,211"), rJ; E [0,11"). (26) 

We solve numerically the inverse problem given by equations (3), (8), (23)-(26) to retrieve the triplet solution 
(r(0, rJ;), UI (r, 0, rJ;), u~(r, B, rJ;)) to compare with the analytical solutions given by equations (19), (20) and 
(22). Also, once u~ has been obtained, equation (7) yields U2. 

Initially, we have performed several numerical runs with various values of the input MFS parameters and, f. 
for illustrative purposes, we have decided to show results only for a typical set of values 6' = 0.5, R 2 and 
N M 10. 

s·
We consider first the case of exact data, i.e. p 0 in equation (17). In Figure I, we present the numerically 

reconstructed domain for various numbers of iterations for no noise and no regularization, as well as the exact P 
1

sphere. From this figure, it can be seen that even if the input data is exact, as the number of iterations increases 
the numerical solution becomes more inaccurate. This is to be expected because no regularization has been ( 
imposed yet and the inverse problem under investigation is iII-posed. In order to restore stability regularization 
should be employed with a positive regularization parameter ,\ in (16). 
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(a) Exact (b) iter=1O 

5 

(c) iter=lOO (d) iter=200 

Figure 1: The reconstructed source for various numbers of iterations for no noise and no regularization. 

Figure 2 shows the higher accuracy and stabilising effect that the regularization has on the retrieved shapes 
for values of). between 10-3 and 10- 1. 

We also perturb by a large amount of p = 10% noise the flux g, as in (17), in order to investigate the 
stability of the numerical solution. The numerically obtained results with various values of the regularization 
parameter). after 200 iterations are shown in Figure 3. From this figure, we observe that overall). between 
10-3 and 10-2 yields accurate and stable results. 

s 

1 Conclusions 

In this paper. an inverse geometric problem which consists of reconstructing the unknown support of a vol
umetric source in the three-dimensional Poisson equation from a single pair of exterior boundary Cauchy data 
has been investigated using the MFS. The numerical results show satisfactory reconstructions for the unknown 
support with reasonable stability against inverting noisy data. 
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Figure 2: The reconstructed source after 200 iterations for no noise and with regularization. 
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Figure 3: The reconstructed source after 200 iterations for p = 10% noise and with regularization. 



