
CSC 215
Memory Management

Dr. Achraf El Allali

Static Allocation

● Allocation of memory at compile-time before
the associated program is executed

● Let’s say we need a list of 1000 names:
○ We can create an array statically

■ char names[1000][20]
■ allocates 20000 bytes at compile time
■ wastes space
■ restricts the size of the names

Dynamic allocation of memory

● Allocate memory during runtime as needed
● #include <stdlib.h>
● Use sizeof number to return the number of

bytes of a data type.
● Use malloc/calloc/realloc to find a specified

amount of free memory and returns a void
pointer to it.

Example

● char * str = (char *) malloc(3 * sizeof(char));
strcpy(str, “hi”);

● str = (char *) realloc(str , 6 * sizeof(char));
strcpy(str, “hello”);

Dynamic Deallocation

● #include <stdlib.h>
● free releases the memory pointed to by a

pointer variable back to the OS:
char * str = (char *) malloc(3 * sizeof(char));
strcpy(str, “hi”);
... use str ...
 free(str);

Free

● Can only be used on pointers that are
dynamically allocated

● It is an error to free:
○ A NULL pointer
○ A pointer that has already been freed
○ Any memory address that has not been directly

returned by a dynamic memory allocation routine

Dynamically Allocated Arrays

● Allows the user to avoid declaring array size
at declaration.

● Use malloc to allocate memory for array
when needed:

int *a;
a= (int *) malloc(sizeof(int) * 10);
a[0]=1;

Example
int size;
char *s;
printf(“How many characters?\n”);
scanf(“%d”, &size);
s = (char *) malloc(size+1);
printf(“type string\n”);
gets(s);

Calloc
void* calloc (size_t num, size_t size);

● Alternative to malloc
● Originally written to allocate arrays
● Allocate and zero-initialize array
● Takes two parameters:

○ Number of elements to allocates
○ Size of an element

Example
#include <stdlib.h>
#include <stdio.h>
int main(){

int *ap, i;
ap =(int*) calloc(10, sizeof(int));
for(i=0;i<10;i++)

printf(“%d\n”,*(ap+i));
return 0;

}

Realloc
void* realloc (void* ptr, size_t size);

● Reallocate memory block
● Changes the size of the memory block pointed

to by ptr
● May move the memory block to a new location
● If the new size is larger, the value of the newly

allocated portion is indeterminate
● Behaves like malloc if ptr is a null pointer

http://www.cplusplus.com/malloc

Example
#include <stdio.h> /* printf, scanf, puts */
#include <stdlib.h> /* realloc, free, exit, NULL */

int main ()
{
 int input,n;
 int count = 0;
 int* numbers = NULL;
 int* more_numbers = NULL;

 do {
 printf ("Enter an integer value (0 to end): ");
 scanf ("%d", &input);
 count++;

 more_numbers = (int*) realloc (numbers, count *
sizeof(int));

 if (more_numbers!=NULL) {
 numbers=more_numbers;
 numbers[count-1]=input;

 else {
 free (numbers);
 puts ("Error (re)allocating memory");
 exit (1);
 }
 } while (input!=0);

 printf ("Numbers entered: ");
 for (n=0;n<count;n++) printf ("%d ",numbers[n]);
 free (numbers);

 return 0;
}

