HW 5 Solution

Problem 12.1: A car starts from rest and reaches a speed of $80 \mathrm{ft} / \mathrm{sec}$ after travelling 500 ft along a straight road. Determine its constant acceleration and time of travel?

Solution:

$$
\begin{aligned}
& V_{o}=0, V=80 \mathrm{ft} / \mathrm{sec}, \quad x_{o}=0, x=500 f t, \quad t=? ?, \quad a=? ? \\
& V^{2}=V_{o}^{2}+2 a\left(x-x_{o}\right) \\
& (80)^{2}=0+2 a(500-0) \\
& 6400=1000 a \Rightarrow a=\frac{6400}{1000} \times \frac{{f t^{2} / s^{2}}_{f t}^{f t}=6.4 \mathrm{ft} / \mathrm{s}^{2}}{V=V_{o}+a t} \\
& 80=0+6.4 t \Rightarrow t=\frac{80}{6.4} \times \frac{f t / s}{f t / s^{2}}=12.5 \mathrm{~s}
\end{aligned}
$$

Problem12.5: Tests reveal that a normal driver can react to a situation in 0.75 sec . before beginning to avoid a collision. It takes about 3 sec for a driver having 0.1% alcohol in his system to do the same. If two such drivers are traveling on a straight road at $30 \mathrm{mph}(44 \mathrm{ft} / \mathrm{s})$ and their cars can decelerate at $2 \mathrm{ft} / \mathrm{sec}^{2}$, determine the shortest stopping distance d for each from the moment they see the pedestrians at A. Moral: Never drink or take drugs.

$$
V_{1}=44 \pi / s
$$

Solution:

For the normal driver:
$v_{o}=44 f t / s, v=0, a=2 f t / s^{2}, t=0.75 \mathrm{sec}, x_{o}=0$,

Note that

$$
x_{1}=v_{0} t
$$

$$
v^{2}-v_{0}^{2}=2 a x_{2} ; \quad x_{2}=\frac{v_{0}^{2}}{2 a}
$$

$\therefore x=x_{1}+x_{2}=44 \times 0.75+\frac{(44)^{2}}{2 \times 2}=33+484=517 f t$
For the drunk driver:

$$
\begin{aligned}
& V_{o}=44 f t / s, a=2 f t / s^{2}, t=3 s, x_{o}=? ?, x=0 \\
& x=44 \times 3+\frac{(44)^{2}}{2 \times 2}=132+484=616 f t
\end{aligned}
$$

Problem12.18: A motorcycle starts from rest at $\mathrm{t}=0$ and travels along a straight road with a constant acceleration of $6 \mathrm{ft} / \mathrm{sec}^{2}$ until it reaches a speed of $50 \mathrm{ft} / \mathrm{sec}$. Afterwards it maintains this speed. Also, when $t=0$, a car located 6000 ft down the road is travelling toward the motorcycle at a constant speed of $30 \mathrm{ft} / \mathrm{sec}$. Determine the time and distance travelled by the motorcycle when they pass each other?

Solution
For the motorcycle

$$
\begin{align*}
& v_{o m}=0 ; v_{m}=50 \mathrm{ft} / \mathrm{s}, a=6 \mathrm{ft} / \mathrm{s}^{2}, t_{1}=? ; t_{2}=?, d_{m 1}=?, d_{m 2}=? \\
& v_{m}=v_{o m}+a t_{m} \\
& 50=0+6 t_{1} \Rightarrow t_{1}=\frac{50}{6} \\
& d_{m}=d_{m 1}+d_{m 2} \\
& d_{m 1}=\frac{1}{2} a t_{1}^{2}=\frac{1}{2} \times(6) \times\left(\frac{50}{6}\right)^{2}=\frac{625}{3} \quad \ldots(1) \\
& d_{m 2}=v_{m}\left(t_{2}-t_{1}\right)=50 \times\left(t_{2}-\frac{50}{6}\right)=50 \quad t_{2}-\frac{1250}{6} \Rightarrow d_{m 2}=50 \quad t_{2}-\frac{1250}{3} \tag{2}
\end{align*}
$$

For the car

$$
\begin{align*}
& V_{C}=30 \mathrm{ft} / \mathrm{s} ; \quad t_{2}=? ; \quad V_{0 C}=0, d_{o}=0, d_{C}=? ? \\
& d_{C}=V_{C} t_{2} \\
& d_{C}=30 t_{2} \ldots \ldots \ldots \ldots \ldots \ldots \tag{3}
\end{align*}
$$

Also, the total distance is 6000 ft :

$$
\begin{equation*}
6000=d_{m}+d_{C}=d_{m 1}+d_{m 2}+d_{C} . \tag{4}
\end{equation*}
$$

Using equations (1-3) into (4)

$$
\begin{aligned}
& 6000=\frac{625}{3}+50 t_{2}-\frac{1250}{6}+30 t_{2} \\
& 80 t_{2}=6000+\frac{1250}{3}-\frac{625}{3}
\end{aligned}
$$

$t_{2}=77.6 \mathrm{sec}$
$\therefore d_{C}=V_{C} t_{2}=30 \times 77.6=2328 \mathrm{ft}$
$\therefore d_{m}=6000-d_{C}=6000-2328=3672 \mathrm{ft}$

Problem12.59: The pitcher throws the baseball horizontally with a speed of $110 \mathrm{ft} / \mathrm{s}$ from a height of 5 ft . If the batter is 60 ft away, determine the time needed for the ball to arrive at the batter and the height at which it passes the batter?

Solution

A

$$
\begin{aligned}
& V=110 f t / s ; \quad d=60 f t ; \quad h_{A}=5 f t \\
& a=g=-32.2 f t / s^{2} \\
& t=\frac{d}{V}=\frac{60}{110} \times \frac{f t}{f t / s}=0.545 \mathrm{~s} \\
& h_{1}=-\frac{1}{2} g t^{2} \\
& h_{1}=-\frac{1}{2} \times 32.2 \times(0.545)^{2}=-4.78 f t \\
& h=5+h_{1}=5-4.78=0.22 f t
\end{aligned}
$$

Problem12.66: The plane is flying horizontally with a constant speed of $250 \mathrm{ft} / \mathrm{s}$ at an altitude of 3000 ft . If the pilot drops a package with the same horizontal speed of $250 \mathrm{ft} / \mathrm{s}$, determine the angle θ at which he must sight the target B so that when the package is released it falls and strikes the target. Air resistance neglected, explain why the package appears to remain directly beneath the plane as it falls?

$h=3000 f t, a=-g=-32.2 \mathrm{ft} / \mathrm{s}^{2}, V_{h}=250 \mathrm{ft} / \mathrm{s}, R=? ?$,
$h=\frac{1}{2} a t^{2} \Rightarrow 2 h=-g t^{2}$
$-3000=-\frac{1}{2} 32.17 t^{2} \Rightarrow t=\sqrt{\frac{6000}{32.17}}=13.7 \mathrm{~s}$
$R=V_{o} t$
$R=250 \times 13.7=3425 \mathrm{ft}$
$\theta=\tan ^{-1} \frac{h}{R}=\tan ^{-1} \frac{3000}{3425}=41.22^{\circ}$

