ME 371 Thermodynamics –I-Second Semester, 1428-1429H 1st Midterm Exam Solutions

Problem 1

3. MASS

a.	(True or False) If the compressibility factor (Z) is less than 1, the fluid is not considered a ideal gas.					
	TRUE					
b.	. (True or False) For ideal gases, $h = u + RT$.					
	TRUE					
c.	When a rigid tank is heated, (i) positive	boundary work is: (ii) negative	(iii) zero			
d.	Specific volume is: (i) an intensive property	(ii) an extensive property	(iii) not a property			
e.	 What are the three mechanisms of energy transfer to and from a system? 1. HEAT 2. WORK 					

Problem 2 Complete the following table for H_2O

T, °C	P, kPa	u, kJ/kg	x	Phase Description
120	198.53	2100	0.788	Saturated liquid-vapor mixture
151.86	500	1408.32	0.4	Saturated liquid-vapor mixture
1200	400	4467		Superheated vapor
180	2000	762.09		Compressed liquid

Problem 3

A rigid tank whose volume is 1 m³ initially contains refrigerant 134a at a pressure of 800 kPa and a temperature of 50°C. The tank is now cooled to a final temperature of 20°C.

- a. Determine the mass of refrigerant 134a.
- b. Determine the final phase of refrigerant 134a (show your work)
- c. Determine the change in specific internal energy during the process (Δu)
- d. Show the process on the *T-v* diagram with respect to saturation lines.

Given: $V = 1 \text{ m}^3$, $P_1 = 800 \text{ kPa}$, $T_1 = 50 ^{\circ}\text{C}$, $T_2 = 20 ^{\circ}\text{C}$

Part (a)

m = V/v

 $v_1 = 0.02846 \text{ m}^3/\text{kg}$ (from Table A-13) (because the fluid is a superheated vapor)

 $\rightarrow m = 1 / 0.02846 = 35.137 \text{ kg}$

_ _ _ _

Part (b)

 $T_2 = 20^{\circ} \text{C}$

 $v_2 = v_1 = 0.02846 \text{ m}^3/\text{kg}$ (because the tank is rigid and the system is closed)

At 20°C, $v_f = 0.0008157 \text{ m}^3/\text{kg}$ and $v_g = 0.0358 \text{ m}^3/\text{kg}$ (from Table A-11)

 $\rightarrow v_{\rm f} < v < v_{\rm g} \rightarrow$ the phase is saturated liquid vapor mixture

Part (c)

 $u_1 = 261.62$ (from Table A-13)

 $u_2 = u_f + x u_{fg}$

To find x: $x = (v - v_f) / (v_g - v_f) = (0.02846 - 0.0008157)/(0.0358 - 0.0008157) = 0.79$

 $\rightarrow u_2 = 76.8 + 0.79 \times (237.91 - 76.8) = 204.11 \text{ kJ/kg} \rightarrow \Delta u = u_2 - u_1 = 204.11 - 261.62 = -57.5 \text{ kJ/kg}$

Part (d)

Problem 4

A stationary piston-cylinder device contains 2 kg of air at 27°C and 100 kPa. The air is now compressed to a pressure of 500 kPa according to the relation $PV^{1.4}$ = constant. Determine the following:

- a. the initial volume of air.
- b. the final volume of air.
- c. the work input during the process.
- d. the change in total internal energy of the system (ΔU) (Hint: use Table A-17)
- e. the amount of heat transfer (Q) during the process.

Given: m = 2 kg, $T_1 = 27^{\circ}\text{C} = 300 \text{ K}$, $P_1 = 100 \text{ kPa}$, $P_2 = 500 \text{ kPa}$, $PV^{1.4} = \text{constant}$.

Part (a)

$$P_1V_1 = mRT_1 \longrightarrow V_1 = mRT_1/P_1 = 2 \times 0.287 \times 300 / 100 = 1.722 \text{ m}^3$$

Part (b)

$$PV^{1.4} = \text{constant} \longrightarrow P_1V_1^{1.4} = P_2V_2^{1.4} \longrightarrow V_2 = \boxed{0.545 \text{ m}^3}$$

Part (c)

For a polytropic process:

$$W_b = (P_2V_2 - P_1V_1) / (1 - n) = (500 \times 0.545 - 100 \times 1.722) / (1 - 1.4) = -251.3 \text{ kJ}$$

Part (d)

$$\Delta U = U_2 - U_1 = m(u_2 - u_1)$$

 $u_1 = 214.07 \text{ kJ/kg}$ (from Table A-17 at $T_1 = 300 \text{ K}$)

To find u_2 , we need to calculate T_2 .

$$P_2V_2 = mRT_2 \longrightarrow T_2 = P_2V_2 / mR = 500 \times 0.545 / 2 \times 0.287 = 475 \text{ K}.$$

By interpolation:

 $u_2 = 341 \text{ kJ/kg}$ (from Table A-17 at $T_2 = 475 \text{ K}$)

$$\rightarrow \Delta U = 2 \times (341 - 214.07) = 253.86 \text{ kJ}$$

Part (e)

Apply energy balance for the system:

$$Q_{\text{net,in}} - W_{\text{net,out}} = \Delta U \longrightarrow Q_{\text{net,in}} - (-251.3) = 253.86 \longrightarrow Q_{\text{net,in}} = 2.56 \text{ kJ}$$