ME 371 Thermodynamics -I-

Second Semester, 1428-1429H
$1^{\text {st }}$ Midterm Exam Solutions

Problem 1

a. (True or False) If the compressibility factor (Z) is less than 1 , the fluid is not considered an ideal gas.

TRUE
b. (True or False) For ideal gases, $h=u+R T$.

TRUE
c. When a rigid tank is heated, boundary work is:
(i) positive
(ii) negative
(iii) zero
d. Specific volume is:
(i) an intensive property
(ii) an extensive property
(iii) not a property
e. What are the three mechanisms of energy transfer to and from a system?

1. HEAT
2. WORK
3. MASS

Problem 2

Complete the following table for $\mathrm{H}_{2} \mathrm{O}$

$T,{ }^{\circ} \mathrm{C}$	P, kPa	$u, \mathrm{~kJ} / \mathrm{kg}$	x	Phase Description
120	$\mathbf{1 9 8 . 5 3}$	2100	$\mathbf{0 . 7 8 8}$	Saturated liquid-vapor mixture
$\mathbf{1 5 1 . 8 6}$	500	$\mathbf{1 4 0 8 . 3 2}$	0.4	Saturated liquid-vapor mixture
$\mathbf{1 2 0 0}$	400	4467	--	Superheated vapor
180	2000	$\mathbf{7 6 2 . 0 9}$	$\mathbf{- -}$	Compressed liquid

Problem 3

A rigid tank whose volume is $1 \mathrm{~m}^{3}$ initially contains refrigerant 134 a at a pressure of 800 kPa and a temperature of $50^{\circ} \mathrm{C}$. The tank is now cooled to a final temperature of $20^{\circ} \mathrm{C}$.
a. Determine the mass of refrigerant 134 a .
b. Determine the final phase of refrigerant 134a (show your work)
c. Determine the change in specific internal energy during the process (Δu)
d. Show the process on the $T-v$ diagram with respect to saturation lines.

Given: $V=1 \mathrm{~m}^{3}, P_{1}=\mathbf{8 0 0} \mathrm{kPa}, T_{1}=50^{\circ} \mathrm{C}, T_{2}=20^{\circ} \mathrm{C}$

Part (a)

$m=V / v$
$v_{1}=0.02846 \mathrm{~m}^{3} / \mathrm{kg}$ (from Table A-13) (because the fluid is a superheated vapor)
$\rightarrow m=1 / 0.02846=35.137 \mathrm{~kg}$

Part (b)

$\boldsymbol{T}_{2}=\mathbf{2 0}{ }^{\circ} \mathrm{C}$
$v_{2}=v_{1}=0.02846 \mathrm{~m}^{3} / \mathrm{kg}$ (because the tank is rigid and the system is closed)
At $20^{\circ} \mathrm{C}, v_{\mathrm{f}}=0.0008157 \mathrm{~m}^{3} / \mathrm{kg}$ and $v_{\mathrm{g}}=0.0358 \mathrm{~m}^{3} / \mathrm{kg}$ (from Table A-11)
$\rightarrow v_{\mathrm{f}}<v<v_{\mathrm{g}} \longrightarrow$ the phase is saturated liquid vapor mixture

Part (c)

$u_{1}=261.62$ (from Table A-13)
$\boldsymbol{u}_{2}=\boldsymbol{u}_{\mathrm{f}}+\boldsymbol{x} \boldsymbol{u}_{\mathrm{fg}}$
To find $x: x=\left(v-v_{\mathrm{f}}\right) /\left(v_{\mathrm{g}}-v_{\mathrm{f}}\right)=(0.02846-0.0008157) /(0.0358-0.0008157)=0.79$
$\rightarrow u_{2}=76.8+0.79 \times(237.91-76.8)=204.11 \mathrm{~kJ} / \mathrm{kg} \longrightarrow \Delta u=u_{2}-u_{1}=204.11-261.62=-57.5 \mathrm{~kJ} / \mathrm{kg}$

Part (d)

Problem 4

A stationary piston-cylinder device contains 2 kg of air at $27^{\circ} \mathrm{C}$ and 100 kPa . The air is now compressed to a pressure of 500 kPa according to the relation $P V^{1.4}=$ constant. Determine the following:
a. the initial volume of air.
b. the final volume of air.
c. the work input during the process.
d. the change in total internal energy of the system (ΔU) (Hint: use Table A-17)
e. the amount of heat transfer (Q) during the process.

Given: $m=2 \mathrm{~kg}, T_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}, P_{1}=100 \mathrm{kPa}, P_{2}=500 \mathrm{kPa}, P V^{1.4}=$ constant.

Part (a)

$P_{1} V_{1}=m R T_{1} \longrightarrow V_{1}=m R T_{1} / P_{1}=2 \times 0.287 \times 300 / 100=1.722 \mathrm{~m}^{3}$

Part (b)

$P V^{1.4}=$ constant $\longrightarrow P_{1} V_{1}^{1.4}=P_{2} V_{2}^{1.4} \longrightarrow V_{2}=0.545 \mathrm{~m}^{3}$

Part (c)

For a polytropic process:
$W_{\mathrm{b}}=\left(P_{2} V_{2}-P_{1} V_{1}\right) /(1-\mathrm{n})=(500 \times 0.545-100 \times 1.722) /(1-1.4)=-251.3 \mathrm{~kJ}$

Part (d)

$\Delta U=U_{2}-U_{1}=m\left(u_{2}-u_{1}\right)$
$u_{1}=214.07 \mathrm{~kJ} / \mathrm{kg}\left(\right.$ from Table A-17 at $\left.T_{1}=300 \mathrm{~K}\right)$
To find u_{2}, we need to calculate T_{2}.
$P_{2} V_{2}=m R T_{2} \rightarrow T_{2}=P_{2} V_{2} / m R=500 \times 0.545 / 2 \times 0.287=475 \mathrm{~K}$.
By interpolation:
$u_{2}=341 \mathrm{~kJ} / \mathrm{kg}\left(\right.$ from Table A-17 at $\left.T_{2}=475 \mathrm{~K}\right)$
$\rightarrow \Delta U=2 \times(341-214.07)=253.86 \mathrm{~kJ}$

Part (e)

Apply energy balance for the system:
$Q_{\text {net,in }}-W_{\text {net, }, \text { out }}=\Delta U \rightarrow Q_{\text {net,in }}-(-251.3)=253.86 \rightarrow Q_{\text {net,in }}=2.56 \mathrm{~kJ}$

