ME 371 Thermodynamics -I-
 Second Semester, 1428-1429H
 $1^{\text {st }}$ Midterm Exam

Time Allowed: 90 minutes

NAME:
STUDENT ID:

Problem 1

(5 marks)
a. (True or False) If the compressibility factor (Z) is less than 1 , the fluid is not considered an ideal gas.
b. (True or False) For ideal gases, $h=u+R T$.
c. When a rigid tank is heated, boundary work is:
(i) positive
(ii) negative
(iii) zero
d. Specific volume is:
(i) an intensive property
(ii) an extensive property
(iii) not a property
e. What are the three mechanisms of energy transfer to and from a system?

Problem 2

(5 marks)
Complete the following table for $\mathrm{H}_{2} \mathrm{O}$

$T,{ }^{\circ} \mathrm{C}$	P, kPa	$u, \mathrm{~kJ} / \mathrm{kg}$	x	Phase Description
120		2100		
	500		0.4	
180	400	4467		
	2000			

Problem 3

(5 marks)
A rigid tank whose volume is $1 \mathrm{~m}^{3}$ initially contains refrigerant 134 a at a pressure of 800 kPa and a temperature of $50^{\circ} \mathrm{C}$. The tank is now cooled to a final temperature of $20^{\circ} \mathrm{C}$.
a. Determine the mass of refrigerant $134 a$.
b. Determine the final phase of refrigerant 134 a (show your work)
c. Determine the change in specific internal energy during the process (Δu)
d. Show the process on the $T-v$ diagram with respect to saturation lines.

Problem 4

(5 marks)
A stationary piston-cylinder device contains 2 kg of air at $27^{\circ} \mathrm{C}$ and 100 kPa . The air is now compressed to a pressure of 500 kPa according to the relation $P V^{1.4}=$ constant. Determine the following:
a. the initial volume of air.
b. the final volume of air.
c. the work input during the process.
d. the change in total internal energy of the system (ΔU) (Hint: use Table A-17)
e. the amount of heat transfer (Q) during the process.

