King Saud University

Department of Mechanical Engineering

ME 374: Thermodynamics -II- ${ }^{\text {st }}$ Midterm Exam
Saturday, 01.12.1433 (17.10.2012); 09:00 am - 10:00 am

Question 1 (20 points)

A frictionless piston-cylinder device, as shown in the figure, initially contains $0.01 \mathrm{~m}^{3}$ of argon gas at 400 K and 350 kPa . Heat is now transferred to the argon from a furnace at 1200 K , and the argon expands isothermally until its volume is doubled. No heat transfer takes place between the argon and the surrounding atmospheric air, which is at $T_{0}=300 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$. Determine (a) the useful work output, (b) the exergy destroyed, and (c) the reversible work for this process.

Question 2 (20 points)

Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and 300 K to an exit pressure of 900 kPa . Determine the compressor work per unit mass for (a) isentropic compression with $k=1.4$, (b) polytropic compression with $n=1.3,(c)$ isothermal compression, and (d) ideal two stage compression with intercooling with a polytropic exponent of $n=1.3$.
Draw a P-V and T-S diagrams for the two stage compression process. For air $\mathbf{R}=\mathbf{0 . 2 8 7} \mathbf{~ k J} / \mathbf{k g} . \mathbf{k}$

Useful Relations

$\underbrace{S_{\text {in }}-S_{\text {out }}}_{$| Net entropy transfer |
| :---: |
| by heat and mass |$}+\underbrace{S_{\text {gen }}}_{$| Entropy |
| :---: |
| generation |$}=\underbrace{\Delta S_{\text {system }}}_{$| Change |
| :---: |
| in entropy |$}$

$$
\begin{aligned}
& \Delta X=X_{2}-X_{1}=m\left(\phi_{2}-\phi_{1}\right)=\left(E_{2}-E_{1}\right)+P_{0}\left(V_{2}-V_{1}\right)-T_{0}\left(S_{2}-S_{1}\right) \\
& =\left(U_{2}-U_{1}\right)+P_{0}\left(V_{2}-V_{1}\right)-T_{0}\left(S_{2}-S_{1}\right)+m \frac{V_{2}^{2}-V_{1}^{2}}{2}+m g\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Isentropic compression with $k=1.4$:
$w_{\text {comp,in }}=\frac{k R T_{1}}{k-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}-1\right]$

