
Physics 116C Solutions to Homework Set #2 Fall 2011

1 Boas, problem p.578, 12.7-5

Show that
∫ 1
−1 dxPl(x) = 0, l > 0 :

This is immediate once we remember that P0(x) = 1: then

∫ 1

−1
dxPl(x) =

∫ 1

−1
dxPl(x) · 1 =

∫ 1

−1
dxPl(x)P0(x) = 0 , l 6= 0 (1)

because of the orthogonality of the Legendre polynomials in the interval (−1, 1).

2 Boas, problem p.580, 12.8-5

Find the norm of xe−x2/2 on the interval (0,+∞) and state the normalized function:
To find the norm N , we have to calculate

N2 =

∫

∞

0
xe−x2/2 · xe−x2/2dx =

∫

∞

0
x2e−x2

dx ; (2)

this can be written as
∫

∞

0
x2e−kx2

dx , with k=1; (3)

Now, if we call I(k) =
∫

∞

0 e−kx2

, we have N2 = − d
dk I(k)

∣

∣

k=1
. I(k) can be retrieved from the Gaussian

integral
∫

∞

−∞

e−kx2

dx =

√

π

k
, =⇒ I(k) =

1

2

√

π

k
(4)

Finally, we find

N2 = − d

dk
I(k)

∣

∣

∣

∣

k=1

=
1

2

√
π
1

2
k−3/2

∣

∣

∣

∣

k=1

=

√
π

4
=⇒ N =

1

2
π1/4 (5)

The normalized function is then
1

N
xe−x2/2 = 2π−1/4xe−x2/2 (6)

3 Boas, problem p.581, 12.9-5

Expand the following function in Legendre series:

f(x) =

{

x+ 1, −1 < x < 0
1− x, 0 < x < 1

. (7)

Now, we write f(x) =
∑

∞

l=0 clPl(x), with unknown coefficients cl; because of the orthogonality of the
Legendre Polynomials, if we multiply f(x) by Pl(x) and integrate between −1 and 1, we have:

∫ 1

−1
dx f(x)Pl(x) =

∞
∑

m=0

cm

∫ 1

−1
dxPm(x)Pl(x) = cl

2

2l + 1
(8)
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Because f(x) is an even function of x, all the odd coefficients will be zero. We want to find an explicit
expression for the coefficient cl:

cl =
2l + 1

2

∫ 1

−1
dx f(x)Pl(x)

=
2l + 1

2

{
∫ 0

−1
(1 + x)Pl(x)dx+

∫ 1

0
(1− x)Pl(x)dx

}

=
2l + 1

2

{
∫ 1

−1
Pl(x) +

∫ 0

−1
xPl(x)dx−

∫ 1

0
xPl(x)dx

}

(9)

We know from problem 1 on this homework set that

∫ 1

−1
Pl(x)dx =

2

2l + 1
δl0 =

{

2 , for l = 0 ,

0 , for l 6= 0 .
(10)

The case of l 6= 0 was treated in problem 1. For l = 0, we have P0(x) = 1 and the integral is trivial. In the
second integral on the right hand side of (9), change variables x → −x and then use Pl(−x) = (−1)lPl(x).
It follows that:

∫ 0

−1
xPl(x)dx = −

∫ 1

0
xPl(−x)dx = −(−1)l

∫ 1

0
xPl(x)dx . (11)

Hence, we conclude that:

cl = δl0 −
2l + 1

2

[

1 + (−1)l
]

∫ 1

0
xPl(x)dx . (12)

Note that (12) implies that cl = 0 for odd l. Thus, c2l+1 = 0 as expected since f(x) is an even
function of x. Thus, its expansion in terms of Legendre polynomials must involve only even functions
which correspond to even l. Since 1 + (−1)l = 2 for even l, we can rewrite (12) as

c0 =
1
2 , (13)

c2l = −(4l + 1)

∫ 1

0
xP2l(x)dx , for l = 1, 2, 3, . . . , (14)

c2l+1 = 0 , for l = 0, 1, 2, 3, . . . , (15)

where c0 has been obtained by inserting P0(x) = 1 into (12) and computing the integral explicitly.
Our remaining task is to compute:

∫ 1

0
xP2l(x)dx . (16)

There are many ways to do this. Perhaps the simplest is to make use of the recursion relation given in
eq. (5.8a) on p. 570 of Boas:

lPl(x) = (2l − 1)xPl−1(x)− (l − 1)Pl−2(x) . (17)

Replacing ℓ −→ 2l + 1, the above recursion relation can be rewritten as:

(2l + 1)P2l+1(x) = (4l + 1)xP2l(x)− 2lP2l−1(x) . (18)

We can now solve this equation for xP2l(x),

xP2l(x) =
2l + 1

4l + 1
P2l+1(x) +

2l

4l + 1
P2l−1(x) . (19)
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Inserting this result into (16) yields:
∫ 1

0
xP2l(x)dx =

2l + 1

4l + 1

∫ 1

0
P2l+1(x) +

2l

4l + 1

∫ 1

0
P2l−1(x) . (20)

This can now be evaluated by making use a the following result derived in class (this result is also given
in problem 23-3 on p. 615 of Boas):

∫ 1

0
P2l+1(x)dx =

(−1)lP2l(0)

2l + 2
=

(−1)l(2l − 1)!!

(2l + 2)!!
=

(−1)l(2l − 1)!!

2l+1(l + 1)!
. (21)

Therefore,
∫ 1

0
xP2l(x)dx =

2l + 1

4l + 1

(−1)l(2l − 1)!!

2l+1(l + 1)!
+

2l

4l + 1

(−1)l−1(2l − 3)!!

2ll!
(22)

Noting that (l + 1)! = (l + 1)l! and (2l − 1)!! = (2l − 1)(2l − 3)!!, one can rewrite (22) as:
∫ 1

0
xP2l(x)dx =

(−1)l

4l + 1

(2l − 3)!!

2ll!

[

(2l + 1)(2l − 1)

2(l + 1)
− 2l

]

= −(−1)l
(2l − 3)!!

2ll!

1

2(l + 1)

=
(−1)l+1(2l − 3)!!

2l+1(l + 1)!
.

Inserting this result back into (14) yields:

c2l =
(−1)l(4l + 1)(2l − 3)!!

2l+1(l + 1)!
, for l = 1, 2, 3, . . . (23)

Combining this result with (13) and (15), it follows that the first few coefficients in the Legendre series
for f(x) are given by:1

c0 =
1
2 , c2 = −5

8 , c4 =
3
16 , c6 = − 13

128 , . . . , (24)

whereas c1 = c3 = c5 = · · · = 0. Hence, we conclude that

f(x) = 1
2P0(x)− 5

8P2(x) +
3
16P4(x)− 13

128P6(x) + · · · . (25)

4 Boas, problem p.582, 12.9-16

Prove the least square approximation property of the Legendre polynomials:
given f(x) the function to be approximated and pl(x) the orthonormal Legendre polynomials, we can
expand f(x) in this basis:

f(x) = c0p0(x) + c1p1(x) + c2p2(x) + . . . =
∑

l=0

clpl(x) (26)

1Of course, we can always compute the first few terms of the Legendre series explicitly. For example,

2c0 =

∫

1

−1

dx f(x)P0(x) =

∫

0

−1

(x+ 1)dx+

∫

1

0

(1− x)dx =
x2

2
+ x

∣

∣

∣

∣

0

−1

+ x−
x2

2

∣

∣

∣

∣

1

0

= 1 =⇒ c0 = 1

2

2

5
c2 =

∫

1

−1

dx f(x)P2(x) =

∫

0

−1

(x+ 1)
1

2
(3x2

− 1)dx+

∫

1

0

(1− x)
1

2
(3x2

− 1)dx = −
1

4
=⇒ c2 = −

5

8

2

9
c4 =

∫

1

−1

dx f(x)P4(x) =

∫

0

−1

(x+ 1)
1

8
(35x4

− 30x2 + 3)dx+

∫

1

0

(1− x)
1

8
(35x4

− 30x2 + 3)dx =
1

24
=⇒ c4 =

3

16

etc.
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The coefficient cl are found by multiplying f(x) by pl and integrating between −1 and 1:

∫ 1

−1
dx f(x)pl(x) =

∫ 1

−1
dx

∑

m=0

cmpm(x)pl(x) =
∑

m

cmδml = cl (27)

Now let F (x) = b0p0(x) + b1p1(x) + b2p2(x) be the (unknown) quadratic polynomial satisfying the
least square condition, that is, such that

I =

∫ 1

−1
dx [f(x)− F (x)]2 (28)

is a minimum. Squaring the bracket and using the orthonormality of the pl’s we can rewrite I as

I =

∫ 1

−1
dx [f2(x) + F 2(x)− 2f(x)F (x)] =

∫ 1

−1
dx

[

f2(x)
]

+ b20 + b21 + b22 − 2b0c0 − 2b1c1 − 2b2c2 =

=

∫ 1

−1
f2(x)dx+ (b0 − c0)

2 + (b1 − c1)
2 + (b2 − c2)

2 − c20 − c21 − c22. (29)

We are looking for the unknown coefficients bl that minimize I; now, there are only three terms in I that
depend on the b’s, and they form a sum of squared numbers: then, I is minimum when these terms are
zero, that is, when bl = cl. Finally, we have found that the coefficients of the quadratic polynomial that
best approximates a function f(x) are the coefficients of the Legendre expansion of the function itself.

Now we can generalize this result to approximate any function to a polynomial of degree n; writing
the polynomial as F (x) =

∑n
l=0 blpl(x) and trying to minimize the integral I =

∫ 1
−1 dx [f(x) − F (x)]2,

working as we did above we find terms depending on the b’s of this form:

(b0 − c0)
2 + (b1 − c1)

2 + . . .+ (bn − cn)
2.

Again, this sum is minimal for bl = cl, that is, when the approximated polynomial is given by the Legendre
expansion of the function itself.

5 Boas, problem p.584, 12.10-3

Show that the functions Pm
l (x) for each m are a set of orthogonal functions on (−1, 1), that is, show that

∫ 1

−1
dxPm

l (x)Pm
n (x) = 0 , l 6= n : (30)

We recall the associated Legendre equation

(1− x2)Pm
l

′′ − 2xPm
l

′ +

[

l(l + 1)− m2

1− x2

]

Pm
l = 0 (31)

and rewrite it as
d

dx

[

(1− x2)Pm
l

′
]

+

[

l(l + 1)− m2

1− x2

]

Pm
l = 0 (32)

Writing this equation for Pm
n (x), multiplying it by Pm

l (x), multiplying (32) by Pm
n (x) and subtracting the

two resulting equations we find

Pm
n

d

dx

[

(1− x2)Pm
l

′
]

− Pm
l

d

dx

[

(1− x2)Pm
n

′
]

+ [l(l + 1)− n(n+ 1)]Pm
l Pm

n = 0 (33)

d

dx

[

(1− x2)(Pm
n Pm

l
′ − Pm

l Pm
n

′)
]

+ [l(l + 1)− n(n+ 1)]Pm
l Pm

n = 0 (34)
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Integrating between −1 and 1, we have

(1− x2)(Pm
n Pm

l
′ − Pm

l Pm
n

′)

∣

∣

∣

∣

1

−1

+ [l(l + 1)− n(n+ 1)]

∫ 1

−1
dxPm

l Pm
n = 0 (35)

The integrated term is zero, so we have proven the orthogonality relation (30) for l 6= n.

6 Boas, problem p.584, 12.10-8

Write the definition of the associated Legendre function by Rodrigues’ formula

Pm
l (x) =

1

2ll!
(1 − x2)m/2 dl+m

dxl+m
(x2 − 1)l (36)

with m replaced by −m.
We have

P−m
l =

1

2ll!
(1− x2)−m/2 dl−m

dxl−m
(x2 − 1)l ; (37)

we quote the following relation from problem 12.10.7

dl−m

dxl−m
(x2 − 1)l =

(l −m)!

(l +m)!
(x2 − 1)m

dl+m

dxl+m
(x2 − 1)l (38)

and substituting (38) in (37) we find

P−m
l =

1

2ll!
(1− x2)−m/2 (l −m)!

(l +m)!
(x2 − 1)m

dl+m

dxl+m
(x2 − 1)l = (39)

=
(l −m)!

(l +m)!

1

2ll!
(1− x2)−m/2(−1)m(1− x2)m

dl+m

dxl+m
(x2 − 1)l = (−1)m

(l −m)!

(l +m)!
Pm
l (x) (40)

Because P−m
l is proportional to Pm

l , it also solves the equation (31).

7 Boas, problem p.587, 12.11-13

Solve y′′ + y′/x2 = 0 by power series.
We take y(x) =

∑

∞

n=0 anx
n and substitute to find

∑

n=2

n(n− 1)anx
n−2 +

∑

n=1

nanx
n−3 = 0 =⇒

∑

n=2

n(n− 1)anx
n−2 +

∑

n=0

(n+ 1)an+1x
n−2 = 0

a1x
−2 + 2a2x

−1 +
∑

n=2

[

n(n− 1)anx
n−2 + (n+ 1)an+1x

n−2

]

= 0 =⇒ an+1 = −n(n− 1)

n+ 1
an (41)

Naively looking at the convergence of the series
∑

∞

n=0 anx
n by the ratio test, we have

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

n = ∞ (42)

The series looks divergent and one is tempted to say that there is no power series solution of the equation.
But if we look back at (41) we see that the starting terms of the series have zero coefficients: we must

have a1 = a2 = 0; in turn, this tells us that an = 0, for all values of n > 0: they are all zero. The only
coefficient without constraints is a0, implying y(x) = a0 = const and one sees that this is a solution of the
equation, as y′ = y′′ = 0.
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8 Boas, problem p.590, 12.12-8

Prove that

lim
x→0

x−3/2J3/2(x) =
1

3

√

2/π : (43)

We write down the series for J3/2

J3/2 =
∞
∑

n=0

(−1)n

Γ(n+ 1)Γ(n+ 1 + 3
2)

(x

2

)2n+ 3

2

. (44)

This series starts with a x3/2 term; if we multiply by x−3/2 and take the limit x → 0, the other terms in
the series are proportional to x2n → 0. Then

lim
x→0

x−3/2J3/2(x) =
1

Γ(1)Γ(32 + 1)
2−3/2 =

1
3
2Γ(

3
2)
2−3/2 =

1
3
2
1
2Γ(

1
2 )

2−3/2 =
1

3

√

2

π
. (45)

where we used Γ(x+ 1) = xΓ(x) and Γ(12) =
√
π.

9 Boas, problem p.590, 12.12-9

Prove that
√

πx

2
J1/2(x) = sinx : (46)

We simply substitute the series for p = 1
2 :

√

πx

2
J1/2(x) =

√

πx

2

∞
∑

n=0

(−1)n

Γ(n+ 1)Γ(n + 1 + 1
2 )

(x

2

)2n+ 1

2

= (47)

=

√

π

2
x

∞
∑

n=0

(−1)n

n!(n+ 1
2)(n + 1

2 − 1) . . . 12Γ(
1
2 )2

2n
√
2
x2n = (48)

=

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1 = sinx (49)

10 Boas, problem p.591, 12.13-6

Show from

Np(x) =
cos(πp)Jp(x)− J−p(x)

sin(πp)
(50)

that
N(2n+1)/2(x) = (−1)n+1J−(2n+1)/2(x) : (51)

For p = 2n+1
2 we have cosπp = 0 and sin πp = (−1)n; plugging those values back in (50) we find

N(2n+1)/2(x) = −(−1)nJ−(2n+1)/2(x). (52)
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11 Boas, problem p.593, 12.15-7

(a) Using d
dx [x

−pJp(x)] = −x−pJp+1(x), show that

∫

∞

0
J1(x)dx = −J0(x)

∣

∣

∣

∣

∞

0

= 1 : (53)

That is immediate once we make the substitution and integrate by parts:
∫

∞

0
J1(x)dx = −

∫

∞

0
dx

d

dx
[x0J0(x)] = −J0(x)

∣

∣

∣

∣

∞

0

= 1. (54)

(b) Use F (p) =
∫

∞

0 e−ptJ0(at) = (p2 + a2)−1/2 to show that
∫

∞

0
J0(t) = 1 (55)

This is also immediate, as
∫

∞

0 J0(t) is the Laplace transform of the Bessel function calculated in p = 0
(with a = 1).

∫

∞

0
J0(t) = F (0) = (1)−1/2 = 1 (56)

12 Boas, problem p.616, 12.23-19

(a) The generating function of the Bessel functions of integral order p = n is

Φ(x, h) = exp

[

1

2
x

(

h− 1

h

)]

=

+∞
∑

n=−∞

hnJn(x). (57)

By expanding the exponential, show that the n = 0 term is J0(x):

Φ(x, h) =

∞
∑

n=0

[12x(h− 1/h)]n

n!
= (58)

=

∞
∑

n=0

1

n!

( x

2h

)n
(h2 − 1)n =

∞
∑

n=0

1

n!

( x

2h

)n
n
∑

k=0

(

n
k

)

h2(n−k)(−1)k = (59)

=
∞
∑

n=0

n
∑

k=0

1

n!

(x

2

)n n!

k!(n − k)!
(−1)khn−2k (60)

We are looking for a term of the form h0J0(x); the power of h in (60) is n− 2k, so that happens only for
even n; then we change the sum variable to n = 2l, and J0 will come from a single term (k = l) in the
sum over k: we have

J0(x) =
∑

l

1

(2l)!

(x

2

)2l (2l)!

l!l!
(−1)l =

∑

l

(−1)l

Γ(l + 1)Γ(l + 1)

(x

2

)2l
(61)

which is the definition of the Bessel function J0(x).

(b) Show that Φ(x, h) is a solution of the differential equation

x2
d2Φ

dx2
+ x

dΦ

dx
+ x2Φ−

(

h
d

dh

)2

Φ = 0 : (62)
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We write down the derivatives of Φ:

dΦ

dx
=

1

2

(

h− 1

h

)

Φ,
d2Φ

dx2
=

1

4

(

h− 1

h

)2

Φ,
dΦ

dh
=

x

2

(

1 +
1

h2

)

Φ (63)

d2Φ

dh2
=

x

2

(

− 2

h3

)

Φ+
x2

4

(

1 +
1

h2

)2

Φ,

(

h
d

dh

)2

Φ = h
dΦ

dh
+ h2

d2Φ

dh2
(64)

Equation (62) is then verified:

x2

4

(

h− 1

h

)2

+
x

2

(

h− 1

h

)

+ x2 − x

2

(

h+
1

h

)

+ x
1

h
− x2

4

(

h+
1

h

)2

= 0 (65)

Now, one can verify that this implies that the functions Jn(x) in the series Φ =
∑

n h
nJn(x) satisfy Bessel’s

equation; substituting the series in (62) we have

x2
∑

n

hnJ ′′

n(x) + x
∑

n

hnJ ′

n(x) + x2
∑

n

hnJn(x)−
∑

n

n2hnJn(x) = 0 (66)

from which we find Bessel’s equation

x2J ′′

n(x) + xJ ′

n(x) + (x2 − n2)Jn(x) = 0. (67)

Finally, we want to verify that the function Jn is a series that starts with the coefficient 1
n!

(

x
2

)n
, that is,

that Jn is the solution to Bessel’s equation that is regular in the origin (so that Φ is indeed the generating
functional of the Bessel functions). We look at the expression (60):

Φ(x, h) =
∑

n

hnJn(x) =

∞
∑

m=0

m
∑

k=0

1

m!

(x

2

)m m!

k!(m− k)!
(−1)khm−2k (68)

Again, we have multiple terms in the sum contributing to the n-th power of h: m − 2k = n =⇒ k =
(m− n)/2

• n even, n = 2N : since k is an integer, this receives contributions only from even values of m,
m = 2M , so that k = M −N

J2N (x) =
∑

M

(x

2

)2M 1

(M −N)!(M +N)!
(−1)M−N , changing variable L = M −N

=
∑

L

(−1)L

L!(L+ 2N)!

(x

2

)2L+2N
(69)

One recognizes that this is the series form of the Bessel function Jn for n = 2N .

• n odd, n = 2N + 1: since k is an integer, this receives contributions only from odd values of m,
m = 2M + 1, so that k = M −N

J2N+1(x) =
∑

M

(x

2

)2M+1 1

(M −N)!(M +N + 1)!
(−1)M−N , changing variable L = M −N

=
∑

L

(−1)L

L!(L+ 2N + 1)!

(x

2

)2L+2N+1
(70)

Again, one sees that this is the expression of the Bessel function Jn for n = 2N + 1.

Finally, we have found that Φ(x, h) is indeed the generating functional of the Bessel functions.
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