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8 CHAPTER 0. INTRODUCTION

0.2 The Correct Price for Futures and Forwards

A future contract can be seen as a standardized forward agreement. Futures are for instance

only offered with certain maturities and contract sizes, whereas forwards are more or less

customized. However, from a mathematical point of view, futures and forwards can be con-

sidered to be identical and therefore we will only concentrate on the first in our considerations

throughout this chapter. A future contract, or simply future, is the following agreement:

Two parties enter into a contract whereby one party agrees to give the other one

an underlying asset (for example the share of a a stock) at some agreed time T

in the future in exchange for an amount K agreed on now.

Usually K is chosen such that no cash flow, i.e. no exchange of money is necessary at the

time of the agreement. Let us assume the underlying asset was a stock then we can introduce

the following notation :

S0: Price of a share of the underlying stock at time 0 (present time).

ST : Price of a share of the stock at maturity T . This value is not known at time 0 and hence

considered to be a random variable.

ST −K: Value of the future contract at time T seen from the point of view of the buyer.

The crucial problem and the repeating theme of these notes will be questions of the

following kind:

What is the value or fair price of such a future at time 0? How should K be

chosen so that no exchange of money is necessary at time 0?

Game theoretical approach: pricing by expectation

One way to look at this problem, is to consider the future contract to be a game having

the following rule: at time T player 1 (long position) receives from player 2 (short position)

the amount of ST − K in case this amount is positive. Otherwise he has to pay player 2
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the amount of K − ST . What is a “fair price” V for player 1 to participate in this game?

Since the amount V is due at time 0 but the possible payoff occurs at time T we also have

to consider the time value of money or simply interest. If r is the annual rate of return,

compounded continuously, the value of the cash outflow V paid by player 1 at time 0 will

be worth erT · V at time T .

Game theoretically this game is said to be fair if the expected amount of exchanged money is 0.

Theorem 0.2.1 (Kolmogorov’s strong law of large numbers).

Suppose X1, X2, X3, . . . are i.i.d random variables, i.e. they are all independently sampled

from the same distribution, which has mean (= expectation) µ. Let Sn be the arithmetical

average of X1, X2, . . . , Xn, i.e.

Sn =
1

n

n∑
i=1

Xi.

Then, with probability 1, Sn tends to µ as n gets larger, i.e. limn→∞ Sn = µ a.s.

Thus, if the expected amount of exchanged money is 0, and if our two players play their

game over and over again, the average amount of money exchanged per game would converge

to 0.

Since the exchanged money has the value −V erT + ST −K at time T , we need:

E(−V · erT + (ST −K)) = 0,

or

(1) V = e−rT (E(ST )−K).

Here E(ST ) denotes the expected value of the random variable ST .

Conclusion: In order to participate in the game player 1 should pay player 2 the amount

of e−rT (E(ST ) − K) at time 0, if this amount is positive. Otherwise player 2 should pay

player 1 the amount of e−rT (K −E(ST )). Moreover, in order to make an exchange of money

unnecessary at time 0, we have to choose K = E(ST ).
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This approach seems quite reasonable. Nevertheless, there are the following two objec-

tions. The second one is fatal.

1) V depends on E(ST ). Or, if we choose K so that V = 0 then K depends on E(ST ).

But, usually E(ST ) is not known to investors. Thus, the two players can only agree to

play the game if they agree on E(ST ), at least for player 1 E(ST ) should seem to be

higher than for player 2.

2) Choosing K = E(ST ) can lead to arbitrage possibilities as the following example shows.

Example: Assume E(ST ) = S0, and choose the “game theoretically correct” value K = S0.

Thus, no exchange of money is necessary at time 0. Now an investor could proceed as follows:

At time 0 she sells short n shares of the stock, and invests the received amount (namely

nS0) into riskless bonds. In order to cover her short position at the same time she enters

into a future contract in order to buy n shares of the stock for the price at S0 = E(ST ).

At time T her bond account is worth nerTS0. So she can buy the n shares of the stock

for nS0, close the short position and end up with a profit of nS0(erT − 1). In other words,

although there was no initial investment necessary at time 0, this strategy will lead to a

guaranteed profit of nS0(erT − 1). This example represents a typical arbitrage opportunity.

Pricing by arbitrage

The following principle is the basic axiom for valuation of financial products. Roughly it

says : “There is no free lunch”.

In order to formulate it precisely, we make the following assumption: Investors can buy

units of assets in any denomination, i.e. θ units where θ is any real number.

Suppose that an investor can take a position (choose a certain portfolio) which has no

net costs (the sum of the prices is less than or equal to zero). Secondly, it guarantees no

losses in the future but some chance of making a profit. In this (fortunate) situation we
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say that the investor has an “arbitrage opportunity”. The principle now states that in an

efficient market, there are no arbitrage opportunities.

This is the idealized version of the real world. In reality the statement has to be rela-

tivized. In an efficient market there are no arbitrage opportunities for a longer period of

time. If an arbitrage situation opens up, investors will immediately jump on that opportu-

nity and the market forces, namely supply and demand, will regulate the price in a way so

that this “loop whole” closes after a short time period. One might say there are no major

arbitrage opportunities because everybody is looking for them.

We now use this principle to find the correct value of K.

Proposition 0.2.2 . There is exactly one arbitrage free choice for the forward price

of a future. It is given by

K = erTS0.

Proof. We will show that any other choice leads to arbitrage.

Case 1: K < erTS0.

At time t = 0: Sell short n units of the asset, lend the received amount of nS0 at an interest

rate of r and enter into a contract to buy forward n units of the asset for the price of K.

At time t = T : Buy n units, and close the short position. Net gain: nerTS0 − nK > 0.

Case 2: K > S0e
rT .

At time t = 0: Borrow the amount of nS0, buy n units of the asset, and enter into a contract

to sell n units for the price of K at time T .

At time t = T : Sell the n units and pay off the loan. Net gain: nK − nS0e
rT > 0. �

Note that the arbitrage free choice for the forward price K is exactly the value of a riskless

bank account at time T in which one invested at time 0 the amount of S0. This observation

is a special case of a more general principle which we will encounter again and again:
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We want to price a claim which pays the amount of F (ST ), where ST is the price of an

asset at some future time T . In the case of a future we have F (ST ) = ST − K. We want

to find a fair price of this claim and to do that we proceed in the following way. We first

need to find a risk neutral probability Q for the random variable ST . This is an “artificial

probability” distribution which might not (and usually does not) coincide with the “real

distribution” for the random variable ST . This risk neutral probability distribution Q has

the property that under Q the expected value of ST equals to S0e
rT , i.e. the value of a bond

account in which one invested the amount S0 at time 0. Then we obtain a fair price of our

claim by evaluating e−rTEQ(F (ST )), which represents the discounted expected value of the

payoff F (ST ) with respect to Q. This means that the formula (1) we obtained in the case

of F (ST ) = K − ST using the game theoretic approach becomes correct if we use the risk

neutral probability distribution of the stock price instead of the real distribution.

In the case of futures the payoff function is linear in ST , and it can easily be seen that

this implies that in this case EQ(F (ST )) does not depend of which risk neutral probability

was chosen. For other claims, for example puts and calls, the computations are not that easy

and different riskneutral probabilities may lead to different prices. So was an arbitrage free

pricing of general (nonlinear) claims achieved by Black and Scholes in 1973 assuming that

the distribution of the underlying assets are lognormal (see Chapter 2). On the other hand

the pricing formula for futures in proposition 0.2.2 was known and used since centuries.

Let us finally discuss a question a reader might have who is the first time confronted with

the problem of pricing contingent claims. Such a reader might have the following objection

to the pricing formula of futures: How can it be that the price of a future does not depend

at all on the expected development of the price of the underlying asset?

We could for example imagine the following situation which seems to contradict at first

sight the result of Proposition 0.2.2. The world demand for cotton is more or less constant

while the supply depends heavily on the wheather conditions, in particular on the amount

of rain in spring. Since cotton is mainly grown in only two regions, the Indian Subcontinent

and in the southeast of the United States drought in one of these regions during spring time
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can dramatically reduce the number of cotton balls harvested in the fall of that year, and

thus increase the price of cotton. Thus, assuming there was a drought in spring, it is safe to

assume a shortage in fall and an increase of prices. Given this scenario, why should a cotton

farmer enter into a contract to sell cotton in fall, if the exercise price is only based on the

price of cotton in spring and the interest rate, but does not incorporate the expected raise

of prices in fall? Wouldn’t it be much more profitable for the farmer to wait until fall and

sell then?

The answer is simple: Since there is an expected shortage in fall based on data which

are already known in spring to all parties involved the price of cotton went already up in

spring. In other words all expected developments of the price are already contained in the

present price. Of course the situation is not always so easily foreseeable as the effect of a

drought on the cotton price. More generally, present prices of assets mirror the expectations

of the investors, which might differ, and one could see the price as the result of a complicated

averaging procedure of the investors’ expectations.
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Chapter 1

Discrete Models

1.1 The Arrow-Debreu Model

In the following model, we only consider two times, T0, the present time, and T1, some time

in the future. We consider N securities, S1, S2, S3, . . . , SN which are perfectly divisible and

which can be hold long or short. At time T0 an investor takes a position by choosing a vector

θ = (θ1, θ2, . . . θN) ∈ RN , where θi represents the number of units of security Si. θ is called

a portfolio. At T0 the price of a unit of Si is denoted by qi, q = (q1, . . . , qN) ∈ RN is called

the price vector. The value of the portfolio θ at time T0 is then given by:

θ · q = θ1q1 + θ2q2 + . . .+ θNqN =
N∑
i=1

θiqi.

The future bears some uncertainty, but we assume that only finitely many possible situ-

ations (with regard to the securities) can occur and we call these different situations states.

We assume there are M such states.

For a security Si, i = 1, 2, . . . , N , and a state j, with j = 1, 2, . . . ,M , Dij denotes the

occurring cash flow for one unit of security i if state j occurs. By “occurring cash flow of

one unit of security Si” we mean its price at time T1 and possible dividend payments. We

put

15
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D =


D11 D12 . . . D1M

D21 D22 . . . D2M

...
...

...

DN1 DN2 . . . DNM

 (N by M matrix).

The pair (q,D) is referred to as the price-dividend pair.

Remark:

1) For i = 1, 2, . . . , N

D(i,·) = i-th row of D = (D(i,1), D(i,2), . . . , D(i,M))

is the vector consisting of all possible cash flows for holding one unit of security Si.

2) For j = 1, . . . ,M

D(·,j) = j-th column of D =


D1j

D2j

...

DNj


is the vector consisting of the cash flows for each security if state j occurs.

3) The transpose of D is defined by

Dt =


D11 D21 . . . DN1

D12 D22 . . . DN2

...
...

...

D1M D2M . . . DNM

 .

If θ ∈ RN is a portfolio

Dt ◦ θ =


D11 D21 . . . DN1

D12 D22 . . . DN2

...
...

...

D1M D2M . . . DNM

 ◦

θ1

θ2

...

θN

 =


D(·,1) · θ

D(·,2) · θ
...

D(·,M) · θ

 .
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Consider the j-th coordinate of this vector: D(·,j) · θ =
∑N

i=1Dijθi represents the total cash

flow for the portfolio θ, assuming state j occurs. Thus Dt ◦ θ represents the vector of all

possible cash flows of the portfolio θ.

Now we can define what we mean by an arbitrage opportunity within this model as

follows.

Definition: A portfolio θ ∈ RN is called an arbitrage if one of the following two conditions

hold

Either: θ · q < 0 and θ ·D(·,j) ≥ 0 for all j = 1, 2, . . . ,M .

Or: θ · q = 0 and  θ ·D(·,j) ≥ 0 for all j = 1, . . . ,M and

θ ·D(·,j0) > 0 for at least one j0 = 1, . . . ,M

 .

In words, an arbitrage is a portfolio which either has a negative value at time T0 (investor

receives money at T0) but represents no liability at time T1. Or it is a portfolio which has

the value zero at time T0, represents no liability in the future, and, more over, has a positive

chance to create some positive cashflow.

Before we state the next observation we want to introduce the following notations. By

RM+ we denote the closed positive cone in RM , i.e.

RM+ = {x = (x1, x2, . . . xM) ∈ RM |xi ≥ 0 for i = 1, 2, . . .M}.

The open positive cone in RM is denoted by RM
++, i.e.

RM++ = {x = (x1, x2, . . . xM) ∈ RM |xi > 0 for i = 1, 2, . . .M}.

Proposition 1.1.1 . A portfolio θ ∈ RN is an arbitrage if and only if

−q1 −q2 . . . −qN
D11 D21 . . . DN1

D12 D22 . . . DN2

...
...

...

D1M D2M . . . DNM


◦ θ =

−q · θ
Dt ◦ θ

 ∈ RM+1
+ \ {0}.
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Principle of “no arbitrage”:

We say the price-dividend pair (q,D) does not admit an arbitrage opportunity,

or equivalently is arbitrage-free, if no portfolio θ ∈ RN represents an arbitrage,

i.e. if for all θ ∈ RN for which θ · q ≤ 0 the following holds:

if θ · q < 0 then θ ·D(·,j0) < 0 for at least one j0 = 1, 2, . . . ,M ,

if θ · q = 0 then θ ·D(·,j) = 0 for all j = 1, . . . ,M or θ ·D(·,j0) < 0 for at least one

j0 = 1, 2, . . . ,M .

The following proposition is a useful consequence. It says that portfolios which generate

at time T1 the same cashflow, no matter which state occurs, must have at time T0 the same

price.

Proposition 1.1.2 . Assume that (q,D) is arbitrage-free. Consider two portfolios θ(1)

and θ(2) for which

θ(1) ·D(·,j) = θ(2) ·D(·,j) for all j = 1, 2, . . . ,M

Then it follows that θ(1) · q = θ(2) · q.

Proof. Assume for example that θ(1) · q < θ(2) · q. Then it is not hard to see that θ(1)− θ(2)

is an arbitrage possibility. �

We now come to the first important result of the Arrow-Debreu model. The first time

reader might not yet see a connection between the theorem below and option pricing. This

connection will be discussed in the next section.

Theorem 1.1.3 . A dividend pair (q,D) does not admit an arbitrage if and only if there

is a vector ψ ∈ RM++ such that q = D ◦ ψ.

Before we can start with the proof of Theorem 1.1.3 we need the following result from

the theory of linear programming often called the Theorem of the Alternative. It can be



1.1. THE ARROW-DEBREU MODEL 19

deduced from the Theorem of Farkas. Both Theorems will be proved in Appendix A where

we also recall some basic notions and results of Linear Algebra.

Theorem 1.1.4 . For an m by n matrix A one and only one of the following statements

is true.

1) There is an x ∈ Rm++ for which At ◦ x = 0.

2) There is a y ∈ Rn for which A ◦ y ∈ Rm+ \ {0}.

Remark. Although a more detailed discussion of this Theorem will be given in Section A.2

we want to give a geometrical interpretation here.

Let L ⊂ Rm be a subspace and let L⊥ = {x ∈ Rm|x · y = 0 for all y ∈ L} its orthogonal

complement. L can be seen as the range R(A) of some m by n matrix A, and in that case

L⊥ is the Nullspace N (At) of At (see section A.1). Now Theorem 1.1.4 states as follows:

Either L contains a non zero vector whose coordinates are non negative, or its

orthogonal complement L⊥ contains a vector having only strictly positive entries.

In dimension two this fact can be easily visualized by the following picture.

Proof of Theorem 1.1.3. We first show “(1)⇐ (2)”. Assume ψ ∈ RM++ and q = D ◦ ψ.
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Let θ ∈ RN , we have to show that it is not an arbitrage. First we observe that

(1.1) θ · q = θ · (Dψ) = (Dtθ) · ψ

where the last equality can be seen as follows:

θ · (Dψ) =
N∑
i=1

θi ·

(
M∑
j=1

Dijψj

)

=
M∑
j=1

ψj

(
N∑
i=1

Dijθi

)

=
M∑
j=1

ψj(D
tθ)j = ψ · (Dtθ).

We have to show:

©1 if q · θ < 0 then for at least one j0, D(·,j0) · θ < 0

©2 if q · θ = 0 then either D(·j) · θ = 0 for all j = 1, . . . ,M or D(·,j0) · θ < 0 for at least one

j0 = 1, . . . ,M .

Note that by (1.1)

θ · q = (Dtθ) · ψ =
M∑
j=1

ψj · (Dtθ)j =
M∑
j=1

ψj(D(·,j) · θ).

If q ·θ < 0 then at least one of the above summands must be negative, since all coordinates

of ψ are strictly positive we deduce that (D(·,j0) · θ) < 0 for at least one j0 ∈ {1, 2, . . .M}.

If q · θ = 0 then either all of above summands are zero or some of them are negative and

some of them are positive, and the claim follows as before.

Proof of “(1)⇒(2)”. Assume there is no arbitrage and define the matrix

A =



−q1 −q2 . . . −qN
D11 D21 . . . DN1

D12 D22 . . . DN2

...
...

...

D1M D2M . . . DNM


=



−q

D(·,1)

D(·,2)

...

D(·,M)


=

−q
Dt

 .
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Now the condition that (q,D) is arbitrage free implies according to Proposition 1.1.1 that

A does not satisfy the second alternative in Theorem 1.1.4 (with m = M + 1 and n = N)

and we conclude that there is a vector x ∈ RM+1
++ so that

Atx =


−q1 D11 . . . D1M

−q2 D21 . . . D2M

...
...

...

−qN DN1 . . . DMM

 ◦ x = −x1


q1

q2

...

qN

+D ◦


x2

x3

...

xM+1

 = 0.

Putting now

ψ = (
x2

x1

, . . . ,
xM+1

x1

)

we conclude that ψ has strictly positive coordinates and that

D ◦ ψ =
1

x1

D ◦


x2

x3

...

xM+1

 = q,

which finishes the proof. �

Definition: Assume the dividend pair (q,D) does not admit an arbitrage, and thus there

is a ψ ∈ RM++ for which q = D ◦ ψ. Such a vector ψ is called a state-price vector.
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1.2 The State-Price Vector

A. Risk neutral probabilities

Remark: Assume we have assigned to each state j a probability pj, i.e. pj > 0 for j =

1, 2, . . . ,M , with
M∑
j=1

pj = 1. For i = 1, . . . ,M , the vector D(i,·) can be seen as a random

variable on the set of all states:

D(i,·) : {1, . . . ,M} 3 j 7→ D(i,j).

The expected value, or mean, of D(i,·) with respect to the probability P = (p1, . . . , pM) is

then

EP(D(i,·)) =
M∑
j=1

pjD(i,j).

Assume now that the considered price-dividend pair (q,D) is arbitrage free. By Theo-

rem 1.1.3 there exists a state-price vector ψ ∈ RM++, i.e.

(1.2) q = D ◦ ψ

Define ψ̂j = ψj/
M∑̀
=1

ψ` > 0, for j = 1, . . . ,M . Since it follows that
M∑
j=1

ψ̂j = 1, ψ̂ =

(ψ̂1, . . . , ψ̂M) can be seen as a probability on the set of all states. By (1.2) it follows that

(1.3)
q

M∑̀
=1

ψ`

= Dψ̂.

We also assume that one of the securities, say S1, is a riskless bond which guarantees a

payment of $1 in all possible states, i.e. D(1,j) = 1 for j = 1, 2, . . . ,M.

On the one hand the price of the bond is

q1 = first coordinate of (D ◦ ψ) = D(1,·) · ψ =
M∑
i=1

ψi.

On the other hand if R is the interest paid over the period [T0, T1] on that bond then

q1(1 +R) = 1, thus q1 =
1

1 +R
.
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Thus, we conclude

(1.4)
1

1 +R
= q1 =

M∑
`=1

ψ`.

Using (1.2) we rewrite qi for i ≥ 2 as:

qi = i-th coordinate of (D ◦ ψ)(1.5)

=
M∑
j=1

Dijψj

=
M∑
j=1

Dijψ̂j ·
M∑
l=1

ψl

=
1

1 +R
·
M∑
j=1

Dijψ̂j

=
1

1 +R
E bψ(D(i,·)).

Thus E bψ(D(i,·)) = (1 + R)qi. Conversely, assume that P = (p1, p2, . . . pm) ∈ RM++ is a

probability on the states, with the property that

EP(D(i,·)) = (1 +R)qi, for all i = 1, 2, . . . , N.

If we let ψ = 1
1+R
P we deduce as in (1.4) and (1.5) that D ◦ψ = q, i.e. that ψ is a state-price

vector. This observation proves the following Theorem.

Theorem 1.2.1 . Let (q,D) be a price-dividend pair and assume that security S1 is a

riskless bond whose interests over the time period between T0 and T1 are R.

Then ψ ∈ RM++ is a state-price vector, i.e. ψ has strictly positive components and satisfies

q = D ◦ ψ, if and only if ψ̂ = ψ/
∑M

`=1 ψ` is a probability on the states which satisfies

qi =
1

1 +R
E bψ(D(i,·)) for all i = 1, 2, . . . N.
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Note that 1.2.1 means that with respect to ψ̂ the expected yield of each security is the

same, namely 1 +R. Therefore, we call such a probability risk neutral probability .

B. State prices seen as prices of derivatives

Assume that in addition to the given securities S1, . . . , SN we introduce for each state

j = 1, 2, . . . ,M the following security SN+j

SN+j pays

$1 if state j occurs

$0 if not,

thus SN+j can be seen as a “bet on state j”. We call these securities “state contingent

securities”. The new dividend matrix will be

(1.6) D̃ =



D11 D12 . . . D1M

D21 D22 . . . D2M

...
...

...

DN1 DN2 . . . DNM

1 0 . . . 0

0 1 . . . 0
...

...
...

0 . . . 1



.

Question: What is a fair price for SN+j, j = 1, 2 . . .M?
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Proposition 1.2.2 . Assume the price-dividend pair (q,D) is arbitrage free.

Let i ∈ {1, . . . , N} and consider the following two portfolios θ(1), θ(2) in RN+M :

θ(1) = (0, . . . , 1
↑

ith coordinate

. . . , 0, 0, . . . , 0)

θ(2) = (0, 0, . . . . . . , 0︸ ︷︷ ︸
N

, Di1, Di2, . . . , DiM).

Thus θ(1) consists of one unit of security Si and θ(2) consists of Di1 units of SN+1, Di2

units of SN+2 etc.

Then θ(1) and θ(2) have the same arbitrage free price at T0.

Proof. Note that

D̃t ◦ θ(1) =


Di1

Di2

...

DiM

 and D̃t ◦ θ(2) =


Di1

Di2

...

DiM



Thus, assuming no arbitrage, they must have the same prices by Proposition 1.1.2. �

Now let us assume that qN+1, qN+2, . . . , qN+M are prices for the state contingent securities

SN+1, . . . , SN+M for which the augmented dividend pair (q̃, D̃) with q̃ = (q1, . . . qN , qN+1, . . . , qN+M)

and D̃ as defined in (1.6) is arbitrage free.

We first note that qN+j must be strictly positive for j = 1, . . . ,M (SN+j represents no

liability at time T1 and might generate a positive cashflow).

Secondly, we deduce for i = 1, . . . , N , with θ(1) and θ(2) as defined in Proposition 1.2.2
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that

qi = price of (θ(1)) = price of (θ(2))

=
M∑
j=1

DijqN+j

= ith row of D ◦


qN+1

...

qN+M

 .

This implies that (qN+1, qN+2, . . . , qN+M) must be a state price vector for (q,D).

Conversely, if (qN+1, qN+2, . . . , qN+M) is a state price vector for (q,D), then

D̃ ◦


qN+1

...

qN+M

 =



q1

. . .

qN

qN+1

...

qN+M


,

which means (qN+1, qN+2, . . . , qN+M) is a also a state price vector for (q̃, D̃).

We therefore proved the following result.
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Theorem 1.2.3 . Let (q,D) be an arbitrage free price-dividend pair.

Then a vector (qN+1, qN+2, . . . , qN+M) is a state price vector for (q,D), if and only if the

new dividend pair (q̃, D̃) with

q̃ = (q1, q2, . . . , qN , qN+1, . . . , qN+M)

and

D̃ =



D11 D12 . . . D1M

D21 D22 . . . D2M

...
...

...

DN1 DN2 . . . DNM

1 0 . . . 0

0 1 . . . 0
...

...
...

0 . . . 1



.

is arbitrage free.

In other words, state price vectors are fair prices for the state contingent securities.

In our model we can now think of a general derivative being a vector f = (f1, . . . , fM),

interpreting fj as the amount the investor receives if state j occurs.

For example in the case of a call on security Si, i = 1, . . . , N with exercise price K, we

have

fj = (Di,j −K)+,

(assuming no dividend was paid during the considered time period).

Since f can be thought of a portfolio containing fj units of the j-th state contingent
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derivative for each j = 1, . . .M the price of a our derivative f is given by

(1.7) price(f) = f · ψ,

where ψ is a state-price vector.

Using Theorem 1.2.1 we can rewrite 1.7 as

(1.8) price(f) =
1

1 +R
E bψ(f),

where ψ̂ is a risk neutral propbability on the states and we consider f to be a random variable

f : {1, . . . ,M} → R on the states.

Remark: Unless D is invertible the equation

q = D ◦ ψ

does not need to have a unique solution ψ and the state prices are usually not determined by

the equation above, i.e. there could be several “fair prices” for the state contingent securities.

Definition. A price dividend pair (q,D) is called a complete market /, if D is invertible.

Note that if (q,D) is complete it follows that (q,D) is arbitrage free if and only if

D−1q ∈ RM++

and in that case ψ = D−1q is the state price vector .

Let us recapitulate the main result we obtained in this and the previous section. The

following conclusion is a special version, of what is called in the literature ”the fundamental

theorem of asset pricing”:

Conclusion: We are given a price-dividend pair (q,D). Then the following are equivalent.

1) (q,D) is arbitrage-free

2) There exists a state-price vector for (q,D), i.e. a vector having strictly positive com-

ponents, satisfying q = D ◦ ψ. ψ can be interpreted in the following two ways:
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2.1) Writing ψ̂ = ψ/
∑M

j=1 ψj, ψ̂ is a riskneutral probability on the states, i.e. a

probability under which all securities have the same expected yield.

2.2) ψ can be seen as a fair price for the state-contingent securities, i.e. a price which

makes the augmented price-dividend pair ((q, ψ), D̃) arbitrage-free, where D̃ is

the N + M by M matrix which one obtains by writing D above the identity

matrix.

Using above notations the price for any derivative f = (f1, . . . fM) equals to:

price(f) = f · ψ =
1

1 +R
E bψ(f).

This means that the price of a derivative is the discounted expected value of f , where

the expected value is taken with respect to the risk neutral probability ψ̂.
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1.3 The Up-Down and Log-Binomial Model

We discuss in this section the simplest of all models for the price of a stock. We will consider

only two securities : a riskless bond with interest rate R (over the investment horizon of one

time period) and a stock which can only move to two possible states. Despite its simplicity

and seeming to be rather unrealistic it leads eventually to the famous Black-Scholes formula

of option pricing, as shown by Cox, Ross and Rubinstein (see Section 1.5).

We are given a riskless zero-bond, it will repay the amount of $1 at the end of the time

period. If R denotes its interest paid over that period, the price of this bond at the beginning

of the time period must be

(1.9) q1 =
1

1 +R
.

Secondly we are given a stock having the price q2 = S0. At the end of the time period the

value of the stock (plus possible dividend payments) can either be DS0 or US0 with D < U

(D for “down” and U for “up”).

Bond: q1 → 1

US0

Stock: S0

↗
↘

DS0

Thus our price vector is q =
(

1
1+R

, S0

)
and our cash flow matrix is

D =

 1 1

S0D S0U

 .
Since D 6= U (otherwise the stock would be a riskless bond), D is invertible and we arrive

to a unique state price vector ψ = (ψD, ψU). Solving the linear system 1 1

S0D S0U

 ◦
 ψD

ψU

 =

 1
1+R

S0


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we get

ψD =
1

1 +R

U − (1 +R)

U −D
(1.10)

ψU =
1

1 +R

(1 +R)−D
U −D

Remark: In order for ψ to have strictly positive coordinates we need that D < 1 +R < U .

Within our model these inequalities are then equivalent to the absence of arbitrage.

From (1.10) we are able to compute the risk neutral probability Q = (QD, QU) and get

QD =
U − (1 +R)

U −D
(1.11)

QU =
(1 +R)−D
U −D

.

Consider now a security which pays f(S0D) in case “down” and f(S0U) if “up” occurs. Then

its fair price is

price(f) = ψD · f(S0D) + ψUf(S0U)(1.12)

=
1

1 +R
[QDf(S0D) +QUf(S0U)]

=
1

1 +R
EQ(f)

Example: If we consider a call option with exercise price K, we have

f(S) = (S −K)+ =

(DS0 −K)+ if S = DS0

(US0 −K)+ if S = US0.

(S being the value of the stock at the end of the time period.) Then the fair price of the call

is

C =
1

1 +R
[QD(DS0 −K)+ +QU(US0 −K)+].

Now we turn to a “multi-period” model. We assume the time period [0, T ] being divided

in n ∈ N time intervals of length t = T/n. We also assume that the securities can only be

traded at the times

t0 = 0, t1 =
T

n
, t2 = 2

T

n
, . . . , tn = T.
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At each trading time tj the stock price can either change by the factor U or by the factor

D. Assuming the stock price at t = 0 was S0, at time t1 it is either DS0 or US0, at time t2

it is D2S0, DUS0 or U2S0, more generally at time tj the stock price can be S
(i)
j = U iDj−iS0,

where i ∈ {0, 1, . . . , j} is indicating the number of up-movements.

This is best pictured by a tree diagram

Thus the possible states of the stock at time tj are given by (S
(i)
j )i=0,1,...,j, where i is the

number of “ups” (thus j − i = number of “downs”). We also assume that R is the interest

paid for $1 invested in the riskless bond over a time period of length T
n

.

Now we consider a security which pays f(S
(i)
n ) at time tn = T if the stock price is

S
(i)
n = S0U

iDn−i.

For given j = 0, 1, 2, . . . , n and i = 0, 1, . . . , j we want to find the fair value of that

security at time tj assuming the stock price is S
(i)
j . Let us denote that value by f

(i)
j .

Eventually we want to find f 0
0 , the price of that security at time 0.

The value of our security at the end of the time period is of course given by its payoff:

(1.13) f (i)
n = f(S(i)

n ) i = 0, 1, . . . , n.

How do we find f
(i)
n−1 for i = 0, 1, . . . , n − 1? If the state at time tn−1 was S

(i)
n−1, there are
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two possible states at time tn, namely S
(i)
n = S

(i)
n−1D or S

(i+1)
n = S

(i)
n−1U , thus we are exactly

in the “up-down” model, discussed before (with S0 = S
(i)
n−1). We therefore conclude that

f
(i)
n−1 =

1

1 +R
[QDf(S

(i)
n−1D) +QUf(S

(i)
n−1U)]

=
1

1 +R
[QDf(S(i)

n ) +QUf(S(i+1)
n )]

=
1

1 +R
[QDf

(i)
n +QUf

(i+1)
n ].

More generally, if we assume that for 1 ≤ j ≤ n we know the values f
(i)
j , i = 0, 1, . . . , j, we

derive the values for f
(i)
j−1 using the “up-down”-model.

(1.14) f
(i)
j−1 =

1

1 +R
[QDf

(i)
j +QUf

(i+1)
j ].

Thus f 0
0 can be obtained by first computing all f

(i)
n−1’s i ≤ n − 1, then all f

(i)
n−2’s i ≤ n − 2

etc., i.e. by “rolling back the tree”.

Using (1.14) and reversed induction we now can prove a formula for f
(i)
j .

Theorem 1.3.1 . Suppose a security pays f(S
(i)
n ) at time tn if S

(i)
n occurs. Then its

arbitrage free price at time tj, 0 ≤ j ≤ n, assuming S
(i)
j occurs at time tj, is

f
(i)
j =

1

(1 +R)n−j

n−j∑
k=0

(
n− j
k

)
Qk
UQ

n−j−k
D f(S(i+k)

n ),

in particular if j = 0 we have

f 0
0 =

1

(1 +R)n

n∑
k=0

(
n

k

)
Qk
UQ

n−k
D f(S(k)

n )

where
(
`
m

)
= `!

m!(l−m)!
.

Proof. For j = n we get f
(i)
n = f(S

(i)
n ), the rest will follow from “reverse induction”. We

assume the formula to be true for some 0 < j ≤ n, and will show it for j − 1.
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Thus, let 0 ≤ i ≤ j − 1. From (1.14) we obtain

f
(i)
j−1 =

1

1 +R
[QDf

(i)
j +QUf

(i+1)
j ]

=
1

(1 +R)n−j+1

[
QD

n−j∑
k=0

(
n− j
k

)
Qk
UQ

n−j−k
D f(S(i+k)

n )

+QU

n−j∑
k=0

(
n− j
k

)
Qk
UQ

n−j−k
D f(S(i+1+k)

n )

]

[Induction hypothesis]

=
1

(1 +R)n−(j−1)

n−(j−1)∑
k=0

(
n− (j − 1)− 1

k

)
Qk
UQ

n−(j−1)−k
D f(S(i+k)

n )

+

n−(j−1)∑
k=1

(
n− (j − 1)− 1

k − 1

)
Qk
UQ

n−(j−1)−k
D f(S(i+k)

n )


 for first sum set

(
n−(j−1)−1
n−(j−1)

)
= 0

for second sum replace k by k + 1


=

1

(1 +R)n−(j−1)

n−(j−1)∑
k=0

[(
n− (j − 1)− 1

k

)
+

(
n− (j − 1)− 1

k − 1

)]
Qk
UQ

n−(j−1)−k
D f(S(i+k)

n )

[
use

(
m
−1

)
:= 0

]
(∗)
=

1

(1 +R)n−(j−1)

n−(j−1)∑
k=0

(
n− (j − 1)

k

)
Qk
UQ

n−(j−1)−k
D f(S(i+k)

n )

which is exactly the claim, once we convinced ourselves of (∗):

For (∗) note:

(n− (j − 1)− 1)!

k!(n− (j − 1)− 1− k)!
+

(n− (j − 1)− 1)!

(k − 1)![n− (j − 1)− 1− (k − 1)]!

=
(n− (j − 1)− 1)![(n− (j − 1)− k) + k]

k!(n− (j − 1)− k)!

=
[n− (j − 1)]!

k![n− (j − 1)− k]!
=

(
n− (j − 1)

k

)
. �
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1.4 Path Dependent Options and Hedging in the Log-

Binomial Model

In the previous section we computed the value of an European style option assuming the

price of the underlying stock follows a simple path. From one trading time to the next it

either changes by the factor U or by the factor D. Now we want to discuss this model

further, in particular we want to interpret the pricing formula obtained in Theorem 1.3.1

in a more probabilistic way and extend it to more general options. Secondly, we want to

discuss the “Hedging Problem”: Given an option, is it possible to find a trading strategy (to

be defined later) which replicates the option?

We will need some notions and results from probability theory, notions like σ-algebras,

random variables, measurability of random variables, expected values and conditional ex-

pected values. In this section we will need these notions only for finite probability spaces. To

keep this exposition as compact as possible we moved the introduction of these concepts to

Appendix B.1. There we discuss binomial and log-binomial processes in detail and introduce

the necessary probabilistic concepts by means of these processes.

As before we are given a bond whose value at the last trading time is $ 1. If R are the

interests this bond pays for the period between two consecutive trading times, the bond has

at time i = 0, 1, . . . , n the value
1

(1 +R)n−i
.

The possible outcomes are all sequences of length n whose entries are either U or D.

Ω = {U,D}n = {(ω1, ω2, . . . ωn)|ωi = U or ωi = D, for i = 1, 2 . . . n}.

The i-th change of the stock price, i = 1, 2 . . . n, is the random variable

Xi : Ω→ R, ω 7→ ωi, and

Hi : Ω→ R, ω 7→ #{j ≤ i|ωj = U}

Ti : Ω→ R, ω 7→ #{j ≤ i|ωj = D}
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the number of “up”- respectively “down”-moves up to time i. The stock price at time i is

then given by

Si = S0

i∏
j=1

Xi = S0U
HiDTi .

For i = 0, 1, . . . , n we let Fi be the set of all events which are realized by the time i.

More precisely, it is the σ-algebra consisting of all possible unions of events of the form

A(ν) = {(ω1, . . . ωn)|ω1 = ν1 . . . ωi = νi}, with ν = (ν1, . . . , νi) ∈ {H,T}i (see B.1). We

observed in B.1 that a random variable X on Ω is Fi-measurable if and only if for ω ∈ Ω

the value X(ω) only depends on the first i outcomes ω1, . . . , ωi. We write in this case also

X(ω1, ω2, . . . ωi).

We make a very weak assumption on the probability P on Ω which measures the likelihood

of the different possible outcomes. We only assume that for each ω ∈ Ω P({ω}) > 0, i.e. all

outcomes of Ω must be possible.

As we already observed in Section 1.3 the “real” probability P is actually irrelevant for

the pricing of options. More important is the risk neutral probability Q. Following (1.11) in

Section 1.3 we define Q to be the probability on Ω for which X1, X2, . . . are independent and

(1.15) Q(Xi = D) = QD =
U − (1 +R)

U −D
and Q(Xi = U) = QU =

(1 +R)−D
U −D

.

This determines Q since we conclude Q({ω}) = Q(
⋂n
i=1{Xi = ωi}) =

∏n
i=1Q({Xi = ωi})

for each ω ∈ Ω.

Recall that the conditional expectation of a random variable X with respect to the σ-

algebra Fi, is the unique existing random variable Y = EQ(X|Fi), which is Fi-measurable

and has the property that for all A ∈ Fi it follows that EQ(1AY ) = EQ(1AX). In our case

we can represent EQ(X|Fi) as (see B.1)

(1.16) EQ(X|Fi) =
∑

(ω1,...ωi)∈{U,D}i
1A(ω1,...ωi)

EQ(1A(ω1,...ωi)
X)

Q(A(ω1,...ωi))
.

This means that for ω ∈ Ω

EQ(X|Fi)(ω) = EQ(X|Fi)(ω1, . . . , ωi) =
EQ(1A(ω1,...,ωi)X)

Q(A(ω1,...,ωi))
.
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The next Proposition explains why Q is called risk neutral.

Proposition 1.4.1 . The discounted stock process(
1

(1 +R)i
Si : i = 0, 1, . . . , n

)
is a martingale with respect to the filtration (Fi)i=0,...,n, i.e.

EQ

(
1

(1 +R)j
Sj|Fi

)
=

1

(1 +R)i
Si

Note that 1.4.1 means that under the probability Q the stock price changes in average

at the same rate as the price of the bond.

Proof. Since for 0 ≤ i < j ≤ n we have Sj = Si
∏j

k=i+1Xk and since Si is Fi-measurable

while
∏j

k=i+1Xk is independent of Fi it follows that

EQ(Sj|Fi) = SiEQ(

j∏
k=i+1

Xk|Fi) (By B.1.6 (2))

= SiEQ(

j∏
k=i+1

Xk) (By B.1.7 (4))

= Si

j∏
k=i+1

EQ(Xk)

= Si[UQU +DQD]j−i

= Si(1 +R)j−i (By (1.15)).

This implies the claim. �

A general derivative will now be simply a map F : Ω→ R. We interpret F (ω1, . . . ωn) to

be the pay off (or the liability) at the time n assuming (ω1, . . . ωn) happened. Note that an

European style derivative is of the form f(Sn(·)). Since the value Sn(ω) only depends on how

many U ’s and how many D’s are contained in ω but not in which order they appear f(Sn(·))
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has the same property. For a general option F this is not necessarily true. Therefore these

more general options are often also called path dependent.

Nevertheless, the problem for finding arbitrage free prices for these kind of derivatives

can be done like in case of European style derivatives. For i ∈ {0, 1, . . . n} we want to know

the value of the derivative at time i. We denote that value by Fi. Fi should (only) depend

on the present and the past, thus Fi = Fi(ω1, . . . ωi).

At the time n it follows of course Fn(ω1, . . . , ωn) = F (ω1, . . . , ωn). Pricing now the deriva-

tive at time n− 1 brings us back to the simple up-down model. Assuming ω1, . . . ωn−1 hap-

pened up to time n− 1 the two possible future values of the derivative are F (ω1, . . . ωn−1, U)

and F (ω1, . . . ωn−1, D). Using now the formula (1.12) of Section 1.3 with S̃0 = Sn−1(ω1 . . . ωn−1),

f̃(US̃0) = F (ω1, . . . ωn−1, U) and f̃(DS̃0) = F (ω1, . . . ωn−1, D) we obtain

Fn−1(ω1, . . . , . . . ωn−1)(1.17)

=
1

1 +R
[QDF (ω1, . . . ωn−1, D) +QUF (ω1, . . . ωn−1, U)]

=
1

1 +R
EQ(F |Fn−1)(ω1, . . . ωn−1)

For the last equality note that by (1.16)

EQ(F |Fn−1)(ω1, . . . ωn−1)

=
EQ(F1A(ω1,...ωn−1))

Q(A(ω1, . . . ωn−1))

=
Q(A(ω1, . . . ωn−1, D))F (ω1, . . . ωn−1, D) +Q(A(ω1, . . . ωn−1, U))F (ω1, . . . ωn−1, U)

Q(A(ω1, . . . ωn−1))

= QDF (ω1, . . . ωn−1, D) +QUF (ω1, . . . ωn−1, U)

More generally using the same argument we can prove the following recursive formula

for Fi, i = 1, . . . n.

Fi−1(ω1, . . . , . . . ωi−1) =
1

1 +R
[QDFi(ω1, . . . ωi−1, D) +QUFi(ω1, . . . ωi−1, U)(1.18)

=
1

1 +R
EQ(Fi|Fi−1)(ω1, . . . ωi−1)
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Using (1.18) we can prove by reversed induction the following pricing formula (see Exer-

cise.....).

Theorem 1.4.2 . For a general derivative F : Ω → R in the log-binomial model the

arbitrage free value at time i ∈ {0, 1, . . .} is given by

Fi =
1

(1 +R)n−i
EQ(F |Fi).

In particular

F0 = EQ(F ).

Remark. For the case of an European style option f(Sn) it is easy to regain the formula

obtained in Theorem 1.3.1 from the result in 1.4.2. Indeed, using the fact that for j ∈

{0, . . . , n}

P(Hn = j) =

(
n

j

)
Qj
UQ

n−j
D (Binomial formula)

we obtain

EQ(f(S)) =
n∑
j=0

P(Hn = j)f(S0U
jDn−j) =

n∑
j=0

(
n

j

)
f(S0U

jDn−j)Qj
UQ

n−j
D ,

which after dividing both sides by (1+R)n leads to the pricing formula obtained in Theorem

1.3.1. A similar computation can be done for the times i = 1, 2, . . . n− 1.

We now turn to the question whether or not and how an investor can replicate a given

derivative F in the log-binomial model using bonds and stocks. First we have to determine

exactly what an allowable investment strategy is.

Defintion. An investment strategy is a sequence (θ(0), θ(1), . . . , θ(n)) so that for i = 0, 1, 2, . . . n

θ(i) = (θ
(i)
B , θ

(i)
S ) with θ

(i)
B and θ

(i)
S being Fi-measurable mappings on Ω into R.

Interpretation. At each trading time i the investor can choose a portfolio consisting out

of θ
(i)
B units of the bonds and θ

(i)
S units of the stock. This choice can only depend on present

and past events since the investor can of course not “look into the future”. This means
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mathematically that θ
(i)
B and θ

(i)
S have to be Fi-measurable and, thus, can only depend on

ω1, . . . , ωi.

|
θ(0)

first move
of stock︷ ︸︸ ︷........... |

θ(1)

second move
of stock︷ ︸︸ ︷.......... ........................................... |

θ(n−1)

nth move
of stock︷ ︸︸ ︷.......... |

Note that the value of a strategy (θ(0), θ(1), . . . , θ(n)) at time i, i.e. the value of the

portfolio at time i, is given by

(1.19) Vi(θ
(i)) = Siθ

(i)
S +

θ
(i)
B

(1 +R)n−i

We call a strategy (θ(0), θ(1), . . . , θ(n)) self financing if at all times i = 1, 2, . . . n the value of

the portfolio θ(i−1) is equal to the value of θ(i), for i = 1, . . . , n, i.e.

(1.20) θ
(i)
S Si +

θ
(i)
B

(1 +R)n−i
= θ

(i−1)
S Si +

θ
(i−1)
B

(1 +R)n−i
.

This means that the investor neither consums part of his portfolio, nor does he add capital

to it.

Theorem 1.4.3 . The log-normal model is complete. This means the following.

For any derivative F there is a self financing strategy (θ(i))ni=0 so that

Vi(θ
(i−1)) = Fi =

1

(1 +R)n−i
EQ(FFi), for i = 1, 2, . . . , n.

Moreover, if ω1, . . . ωi ∈ {U,D}, and if i = 0, 1 . . . , n− 1, then θ
(i)
B and θ

(i)
S are given by:

(1.21) θ
(i)
B (ω1, . . . ωi) = (1 +R)n−i−1UFi+1(ω1, . . . ωi, D)−DFi+1(ω1, . . . ωi, U)

U −D

(1.22) θ(i)S(ω1, . . . ωi) =
Fi+1(ω1, . . . ωi, U)− Fi+1(ω1, . . . ωi, D)

Si(ω1, . . . ωi)(U −D)

Remark. Before we start the proof of Theorem 1.4.3 we first want to explain how one ob-

tains that (1.21) and (1.22) are the only possible choices. Indeed, for i = 0, 1 . . . i, and given
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past outcomes (ω1, . . . , ωi) we need to choose θ(i) = (θ
(i)
B , θ

(i)
S ) so that no matter whether the

next move of the stock is D or U , the portfolio θ(i) will have the value Fi+1. This leads to

the following two equations

Vi+1(θ(i))(ω1, . . . , ωi−1, D) = θ
(i)
S SiD +

θ
(i)
B

(1 +R)n−(i+1)
= Fi+1(ω1, . . . , ωi, D)

and

Vi+1(θ(i))(ω1, . . . , ωi−1, U) = θ
(i)
S SiU +

θ
(i)
B

(1 +R)n−(i+1)
= Fi+1(ω1, . . . , ωi, U).

Solving now these two equations leads to (1.21) and (1.22).

Proof of Theorem 1.4.3. We first will observe that the value of θ(i) as given in (1.21) and

(1.22) equals to Fi.

Let (ω1, . . . , ωi) ∈ {U,D}i (if i = 0, then (ω1, . . . , ωi) = ∅). In the following computa-

tion we suppress the dependance in (ω1, . . . , ωi) and write for example Fi+1(U) instead of

Fi+1(ω1, . . . , ωi, U).

Vi(θ
(i)) = θ

(i)
S Si +

θ
(i)
B

(1 +R)n−i

=
Fi+1(U)− Fi+1(D)

U −D
+

1

1 +R

UFi+1(D)−DFi+1(U)

U −D

=
1

1 +R

[
Fi+1(U)

1 +R−D
U −D

+ Fi+1(D)
U − (1 +R)

U −D

]
=

1

1 +R
[Fi+1(U)QU + Fi+1(D)QD] [By (1.15)]

= Fi [By (1.18)],

which proves our first claim.

Secondly, we have to show that (θ(i))n−1
i=1 is self financing. For that we have to show that

for i = 0, 1 . . . n − 1 the value of θ(i) is Fi+1 after the i + 1st move of the stock no matter



42 CHAPTER 1. DISCRETE MODELS

whether the i+ 1st move is D or U . Indeed, if it is D then we obtain

Vi+1(θ(i))(D) = θ
(i)
S SiD +

θ
(i)
B

(1 +R)n−(i+1)

= D
Fi+1(U)− Fi+1(D)

U −D
+
UFi+1(D)−DFi+1(U)

U −D
= Fi+1(D).

If the i+ 1st move is U we proceed in a similar way. �
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1.5 The Approach of Cox, Ross and Rubinstein to the

Log-Normal Model

1.6 The Factors

1.7 Introduction to the Theory of Bonds

1.8 Numerical Considerations
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Chapter 2

Introduction to Stochastic Calculus,

the Brownian Motion

The theory of stochastic processes, and in particular Stochastic Calculus, turned out to

become one of the most important tools of modern theory of security pricing. Black and

Scholes. Therefore we will give in this chapter an introduction to this theory.

The reader who is at this point not interested in a rather detailed exposition of Stochastic

Calculus might only want to go through the first section of this chapter. In this first section

we will introduce the Brownian Motion, and develop in a rather heuristic approach the key

result, the formula of Ito.

The following sections present a more rigerous and selfcontained exposition of the basics

on stochastic processes. After proving some important properties of the Browninian Motion

in Section (2.2) we will define stochastic integrals with respect to the Brownian Motion (Sec-

tion 2.3). Finally we will present in Section (2.4) the “Fundamental Theorem of Stochastic

Integration”, the Theorem of Ito.

For the reader whose background in probability theory got a little rusty we included a

presentation of the basics in Appendix B.2. We also wrote a more detailed introduction to

the notion of conditional expectations in B.3 and presented several notions of convergence

for random variables in Appendix B.4.

45
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2.1 Introduction of the Brownian Motion

We introduce a model for describing stock prices using stochastic processes indexed over a

continous time interval.

Let St, t ≥ 0, be the price of a certain stock (or any other financial security) at time t.

We think of St as being a random variable defined on some probability space (Ω,F ,P). We

want to write the change ∆St from St to St+∆t, with ∆t > 0 being small, in the following

way:

(2.1)
∆St
St

=
St+∆t − St

St
= ∆t · µ+ “white noise”

where µ is the “drift” and the term “white noise” causes the typical “wiggling” of the stock

price. We will develop this concept more rigorously later. Let us first explain the “white

noise” by an analogy.

Consider a very small oil drop (about 1
1000

mm radius) in a gas or a liquid. Observing

it under a microscope, one would notice that it seems to move randomly on zig-zag shaped

paths, even if no force is acting and if the flow of the medium is zero. The reason of that

movement is caused by the molecules of the medium kicking and banging against the oil

drop from all sides.

Over a long period of time, the oil drop gets approximately on average the same momen-

tum in each direction. Nevertheless, in a short period of time there could be more momentum

in a single direction.

The stock price is exposed to similar forces. On one hand its movement depends on

deterministic forces, like general perception of the market, expectations of profit etc. (com-

parable to the flow of the medium in which the oil drop is situated). On the other hand it

might simply happen that during a short period of time there are more buyers than sellers

or vice versa, pushing the stock price up or down respectively.

Going back to the oil drop, let us develop a model for its random movement. Let Xt be

the, say, x-coordinate of the oil drop at time t.

In the time interval [t, t + ∆t] the drop gets kicked by say n molecules, each of them
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causing a small displacement denoted by di, i = 1, . . . , n.

Then the total displacement after ∆t in x− direction is

∆Xt =
n∑
i=1

di

d1, d2, . . . , dn can be seen as independent random variables with expectation E(di) = 0, and

variance Var(di) = σ2
i . Since we assume the di’s to be independant the variance of the total

diplacement is ∆σ2 =
n∑
i=1

σ2
i .

Since n is very big and the di’s have mean zero and are independent the distribution of

∆Xt is approximately normal distributed with mean zero and variance
∑
σ2
i (Central Limit

Theorem B.2.16 in Appendix B.2). Assuming homogeneity in time, ∆σ2 should be propor-

tional to ∆t. Thus, it follows that

n∑
i=1

σ2
i = ∆tσ2,

for some positive number σ2.

Secondly, the displacement ∆Xt during the period [s, t], caused by collisions of the oil

drop with the gas molecules during that period, is independent from the movement prior to

time s.

We can therefore conclude the following two properties of Xt:

1) For any s < t, the difference Xt−Xs is normal distributed with mean being zero, and

variance being proporitional to t− s, i.e. Xt −Xs is N(0, σ2(t− s)) distributed.

2) For any s < t, the difference Xt −Xs is independent to Xr, r ≤ s.

This two properties together with continuity in t characterizes the stochastic process

known as Brownian Motion, named after the Scottish botanist Robert Brown, who studied

the movements of pollen grains.

We will now switch to a more rigerous introduction of stochastic processes and the Brow-

nian Motion.
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We consider a probability space (Ω,F ,P), which we assume to be fixed throughout this

section. First we introduce the notion of stochastic processes.

Definition. A stochastic process over a continuous time is a family of random variables

(Xt), Xt : Ω→ R, indexed over t ∈ [0,∞) or t ∈ [0, T ], for which the map

Ω× [0,∞) 3 (ω, t) 7→ Xt(ω)

is measurable with respect to the product σ-algebra F ⊗BR+
0

. This is the smallest σ algebra

on Ω× R which contains all sets of the form A×B with A ∈ F and B ∈ BR+
0

. If (Xt)t≥0 is

a stochastic process and we fix ω ∈ Ω, the map

X(·)(ω) : t 7→ Xt(ω)

is called a path of (Xt).

(Xt)t≥0 is called a continuous stochastic process if almost all paths are continuous, i.e. if

P({ω ∈ Ω: t 7→ Xt(ω) is continuous)} = 1.

We call a stochastic process integrable, respectively square integrable, if for all t ≥ 0,

EP(|Xt|) <∞, respectively EP(X2
t ) <∞.

Definition. A filtration of the probability space (Ω,F ,P) is a family of σ- algebras (Ft)t≥0

for which

Fs ⊂ Ft ⊂ F , if s ≤ t.

In this case we call (Ω,F , (Ft),P) a filtered probability space. A stochastic process (Xt) is

called adapted to a filtration (Ft)t≥0 if Xt is Ft-measurable for each t ≥ 0.

In the sections 1.3, 1.4 and B.1 we considered processes indexed over finitely many times

which had furthermore the property that they only could assume finitely many possible

values. We are now in a more general situation. Xt can now assume infinitely many possible

values and secondly the time is now an element of a whole interval. This more general

situation will cause several technical problems we have to overcome. Nevertheless, the more

general situation has the same interpretations.

At time t0 the stock price will be assumed to be a random variable Xt0 , where (Xt)

is a stochastic process defined on (Ω,F ,P). We will assume that (Xt) is adapted to some
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filtration(Ft)t≥0 and for time t0 the σ-algebra Ft0 stands for the set of events for which we

know whether or not they occured by the time t0.

Also EP(Xt|Fs), for s < t, will be intepreted as the “expected value of Xt, given all the

facts known up to time s”. Since Xt might and will assume infinitely many values we will

not be able to compute EP(Xt|Fs) in an intuitve way, as we did in Section B.1. We have to

use the definition of conditional expectations as given in B.3. EP(Xt|Fs) is defined to be the

(up to almost sure equality) uniquely existing Fs-measurable random variable Y so that for

all A ∈ Fs it follows that EP(1AY ) = EP(1AXt).

There are stochastic processes which are of special interest: the ones which “stay stable

in average”, the ones which “increase in average”, and the ones which “decrease in average”.

Definition. An adapted and integrable stochastic process (Xt) on (Ω,F , (Ft),P) is called a

1) Martingale (relative to (Ft)) if EP(Xt|Fs) = Xs a.s., for all s < t.

2) Super-martingale (relative to (Ft)) if EP(Xt|Fs) ≤ Xs, a.s., for all s < t.

3) Sub-martingale (relative to (Ft)) if EP(Xt|Fs) ≥ Xs, a.s. for all s < t.

Inspired by the analysis of the movement of the oil drop at the beginning of this section

we now can give a precise definition of a Brownian Motion.

Definition. A stochastic process (Bt)t≥0 on an probability space (Ω,F ,P) adapted to a

filtration (Ft)t≥0 is called a Brownian motion (relatively to (Ft)) if it has the following four

properties.

1) B0 = 0.

2) Bt −Bs is N(0, t− s) distributed for any choice of 0 ≤ s < t. For the definition of the

normal distribution see Appendix B.2.

3) Bt −Bs is independent of Fs for any choice of 0 ≤ s < t . Recall that this means that

for any measurable A ⊂ R and any F ∈ Fs.

P(F ∩ {Bt −Bs ∈ A}) = P(F )P({Bt −Bs ∈ A}) = P(F )
1√

2π(t− s)

∫
A

e−
x2

2(t−s)dx.
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4) The paths of Bt are continuous.

We could for example take Ft to be the σ-algebra generated by all Bs, 0 ≤ s ≤ t. But we

might want to assume that Ft depends also on other events, (i.e. results of other random

variables.

Taking now a Brownian motion as a model for the stock price will not be very realistic,

simply because of the fact that Bt can assume negative values. The widely used model for

stocks is therefore an “exponential version of the Brownian motion”.

Defintion. Assume that Bt is a Brownian motion on the filtered probability space

(Ω,F , (Ft),P). Let µ ∈ R, ν > 0, and S0 > 0

The process St defined by:

(2.2) St = S0e
µt− 1

2
ν2t+νBt ,

is called a log-binomial process or geometrical Brownian motion, with drift being µ and

volatility being ν.

Remark. It seems at first sight unnatural to separate the the term µt from the term 1
2
ν2t

instead of simply gather it to a term at. The reason for this separation is the fact that the

process S0e
− 1

2
ν2t+νBt is a martingale as we will see in the next section. Therefore the factor

eµt determines by how fast the process increases in average.

Secondly we will see in Section 2.4 that the process St as defined above satisfies the

following “stochastic differential equation”

dSt = µStdt+ νStdBt,

meaning that the infinitesimal percental change of St, or dSt
St

, at time t has a deterministic

part proportional to to dt, namely µdt, and a random part which is proportional to the

infinitesimal changes of Bt, namely νdBt. This will be explained in more detail during the

next sections.

The log-normal model for stock prices can now be similar derived as our analysis of the

movement of the oil drop. The action of the participants of the stock market have a similar
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effect on the stock price as the molecules have on the oil drop. But instead of assuming that

this actions cause additive changes, we assume that they cause multiplicative changes.

Remark: There are some serious problems assuming log-normality of a stock price St.

1) The number of investors (about 1000 during a day for the stock of a large company)

is much smaller than the number of molecules hitting an oil drop (about 1010).

2) The molecules acting on the oil drop have comparable momenta, which implies that

above mentioned variances σ2
i are comparable. The difference between the financial

power of the different investors is much higher.

3) The impulses of the molecules hitting an oil drop can be assumed to be independent.

It is not that clear, and only a rough approximation to assume that investors make

their decisions independently.

Because of (1), (2) and (3) the use of the Central Limit Theorem is much more problematic

in the case of a stock than in the case of the oil drop.

A very serious flaw of the log-normal model is also the fact that it assumes that stock

prices move continuously. It is clear that for example a bold statement of the president of

the Federal Bank can cause quite abrupt moves of the stock prices.

Therefore the log-normal model can and should only be used as a rough approximation

to the real situation. History shows that in “calm times” it works quite well, but can become

false in crash situations.

We now turn to the following central question concerning approximation of general func-

tions by linear functions: assume f(x) is a differentiable function. We are fixing a value a

and want to estimate the difference f(x)− f(a). A basic result in Calculus provides as that

f(x)− f(a) can be written as

(2.3) f(x) = f(a) + f ′(a)(x− a) + o(x− a),

where the rest term o(x−a) has a smaller order than |x−a| meaning that limx→a
o(x−a)
|x−a| = 0.

this means that x→ f(a) +f ′(a)(x−a) is the best linear approximation of f(x) at a. Better
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approximation includes the second derivative of f :

(2.4) f(x) = f(a) + f ′(a)(x− a) + f ′′(a)(x− a) + o((x− a)2),

where limx→a
o((x−a)2)

(x−a)2
= 0.

Now we want to replace the variable x by the random variable Bt. Given t ≥ 0 and

∆t > 0 we could write as in (2.3)

(2.5) f(Bt+∆t) = f(Bt) + f ′(Bt)∆Bt + o(∆Bt),

where ∆Bt = Bt+∆t−Bt. We are interested in an approximation in which the rest term has

a smaller order that ∆t. Since ∆Bt is a random variable whose variance is ∆t, it follows that

E(|∆Bt|) is of the order
√

∆t (see Exercise....). We therefore have to pass to the quadratic

approximation which leads to

(2.6) f(Bt+∆t) = f(Bt) + f ′(Bt)∆Bt +
1

2
f ′′(Bt)∆

2Bt + o(∆2Bt).

An important property of the Brownian Motion (see Section 2.2) states now that the ran-

dom variable ∆2Bt is assymptotically deterministic meaning that lim∆t ∆2Bt/∆t = 1 almost

surely. Therefore we deduce the following approximation formula:

(2.7) f(Bt+∆t) = f(Bt) + f ′(Bt)∆Bt +
1

2
f ′′(Bt)∆

2
t + o(∆2Bt).
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Usually Equation 2.7 is written as an equation using the notations of differentials:

(2.8) df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt.

If f(x, t) is a function in two variables, is once differentiable in t and twice differentiable in

x, a similar approach leads to the following differential equation.

(2.9) df(t, Bt) =
∂f

∂t
(t, Bt)dt+

∂f

∂x
(t, Bt)dBt +

1

2

∂2f

∂x2
(t, Bt)dt,

meaning that small changes of t cause that f(t, Bt) changes approximately proportional to

the change of t (with factor ∂f
∂t

(t, Bt) + 1
2
∂2f
∂x2 (t, Bt)) and proportional to the change of Bt

(with the factor ∂f
∂x

(t, Bt)).

This differential formula can also be rewritten as integral formula similar as one can write

f(a)− f(b) as the integral of f ′ from a to b.

(2.10) f(T,BT )− f(0, 0) =

∫ T

0

∂f

∂t
(t, Bt)dt+

∫ T

0

∂f

∂x
(t, Bt)dBt +

∫ T

0

1

2

∂2f

∂x2
(t, Bt)dt.

Here the first and the third integral are interpreted as the random variables which assign to

each ω ∈ Ω the integral of the functions t 7→ ∂f
∂t

(t, Bt(ω)) and t 7→ 1
2
∂2f
∂x2 (t, Bt(ω)) respectively.

The second integral is a stochastic integral and its introduction will need further explanation

in the following sections.

Applying formula (2.9) to the lognormal process St = S0e
µt− ν

2

2
t+νBt we derive that

dSt = (µ− nu2

2
)S0e

µt− ν
2

2
t+νBtdt+

ν2

2
S0e

µt− ν
2

2
t+νBtdBt +

1

2
ν2eµt−

ν2

2
t+νBtdt(2.11)

= µStdt+ νStdBt,

This formula explains now the heuristically introduced formula 2.1 for processes describing

the value of a stock.

Using the chainrule we deduce for a function f(t, x) that

df(t, St) =
∂f

∂t
(t, St)dt+

∂f

∂x
(t, St)[µStdt+ νStdBt] +

1

2
ν2S2

t

∂2f

∂x2
(t, St)dt(2.12)

=
[∂f
∂t

(t, St) + µSt
∂f

∂x
(t, St) +

1

2
ν2S2

t

∂f

∂t
(t, St)

]
dt+

∂2f

∂x2
(t, St)dBt.
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2.2 Some Properties of the Brownian Motion

In this section we will present and prove some properties of the Brownian Motion. We

assume throughout this section that (Bt) is a Brownian Motion on the filtered probability

space (Ω,F , (Ft),P). Since in this section the considered probablity will always be P we will

denote the expected value with respect to P by E instead of EP.

Proposition 2.2.1 . (Bt) is a square integrable process and:

1) If s < t, then E(Bt|Fs) = Bs, i.e. Bt is a martingale,

2) if s < t, then E((Bt −Bs)
2) = t− s

3) E(BtBs) = min(s, t).

Proof. The fact that Bt is normal distributed implies that (Bt) is square integrable.

If s < t it follows that

E(Bt|Fs) = E(Bs +Bt −Bs|Fs) = Bs + E(Bt −Bs|Fs)

Since Bt −Bs has mean zero and is independent to Fs it follows from Proposition B.3.3 (3)

in Appendix B.3 that

E(Bt −Bs|Fs) = E(Bt −Bs) = 0,

which implies the first claim.

The second claim simply follows from the fact that Bt −Bs has mean zero and variance

(t− s).

Using similar arguments as for the proof of claim (1) we derive for s < t that

E(BtBs) = E(B2
s + (Bt −Bs)Bs) = E(B2

s ) + E((Bt −Bs)Bs) = s+ E(Bt −Bs)︸ ︷︷ ︸
0

E(Bs)︸ ︷︷ ︸
0

= s.

which implies the third claim. �
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The next Proposition will be necessary to analyse the “quadratic variation” of the paths

of the Brownian motion.

Proposition 2.2.2 . For s < t it follows that

E([(Bt −Bs)
2 − (t− s)]2) = 2(t− s)2.

Proof. Bt −Bs is N(0, t− s) distributed whose density is given by

ρ(x) =
1√

2π(t− s)
e−x

2/2(t−s).

Letting g(x) = (x2−(t−s))2. and h = t−s, we deduce from Proposition B.2.9 in Appendix B.2

and from basic integration techniques that

E([(Bt −Bs)
2 − (t− s)]2) =

∞∫
−∞

g(x)ρ(x)dx

=
1√
2πh

∞∫
−∞

(x2 − h)2e−x
2/2hdx

=
1√
2πh

∞∫
−∞

(x4 − 2x2h+ h2)e−x
2/2hdx

=
1√
2πh

∞∫
−∞

x4e−x
2/2hdx− h2.

since

1√
2πh

∞∫
−∞

x2e−x
2/2hdx = h and

1√
2πh

∞∫
−∞

e−x
2/2hdx = 1.

We continue above computation by
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E([(Bt −Bs)
2 − (t− s)]2) =

1√
2πh

∞∫
−∞

x3

v
xe−x

2/2h︸ ︷︷ ︸
u′

dx− h2

=
1√
2πh

∞∫
−∞

3x2he−x
2/2hdx− h2

= 3h2 − h2 = 2h2 = 2(t− s)2,

which finishes the proof. �

Proposition 2.2.3 .

1) The process (B2
t − t)t≥0 is a martingale.

2) The log-normal process (eνBt−
1
2
ν2t)t≥0 is a martingale.

Proof. We will only prove the second claim and leave the first part to the reader.

For s < t it follows from the independance of Bt −Bs to Fs that

E(eνBt−
1
2
ν2t|Fs) = E(eνBs−

1
2
ν2s · eν(Bt−Bs)− 1

2
ν2(t−s)|Fs)

= eνBs−
1
2
ν2s · E(eν(Bt−Bs)− 1

2
ν2(t−s))

We are left to show that E(eν(Bt−Bs)− 1
2
ν2(t−s)) = 1. Put h = t− s and note that

E(eν(Bt−Bs)− 1
2
ν2h) =

1√
2πh

∞∫
−∞

eνx−
1
2
ν2he−x

2/2hdx

=
1√
2πh

∞∫
−∞

e−
x2−2xνh+ν2h2

2h dx =
1√
2πh

∞∫
−∞

e−
(x−νh)2

2h dx = 1,

where the last equality follows from the fact that 1√
2πh

e−
(x−νh)2

2h is the density of the normal

distribution with mean νh and variance h.

This implies the claim. �
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We finally want to treat an extremely important property of the Brownian motion,i.e. of

the “quadratic variation”of its paths.

We need the following notation.

Definition: Given an interval [s, t] and a function f : [s, t]→ R. For a partition

P = {t0, t1, . . . , tn}, with s = t0 < t1 < · · · < tn = t we put

qv(f, P, [s, t]) =
n∑
i=1

(f(ti)− f(ti−1))2.

Define also ‖P‖ = max
i=1,...,n

|ti − ti−1| we say f is of finite quadratic variation on [s, t] if

qv(f, [s, t]) = lim
‖P‖→0

qv(f, P, [s, t])

exists.

By “lim‖P‖→0 qv(f, P, [s, t]) = a” we mean the following: For any ε > 0 there is a δ > 0 so

that whenever P is a partition of [s, t] for which ‖P‖ ≤ δ then |qv(f, P, [s, t])− a| < ε.

Proposition 2.2.4 . If f : [s, t] → R is differentiable, with sup
s≤x≤t

|f ′(x)| = C < ∞ then

qv(f, [s, t]) = 0.

Proof. Let P = {t0, t1, . . . , tn} be a partition of [s, t]

n∑
i=1

|f(ti)− f(ti−1)|2 =
n∑
i=1

(ti − ti−1)2

[
f(ti)− f(ti−1)

ti − ti−1

]2

=
n∑
i=1

(ti − ti−1)2|f ′(t∗i )|2

[Mean Value Theorem , t∗i ∈ [ti−1, ti] appropriately chosen]

≤ C2

n∑
i=1

(ti − ti−1)2

≤ C2 max
i=1,...,n

|ti − ti−1| ·
n∑
i=1

|ti − ti−1|︸ ︷︷ ︸
=t−s

= C2(t− s)‖P‖ → 0, if ‖P‖ → 0. �
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For an ω ∈ Ω we will now study the quadratic variation of the paths B(·)(ω) : [s, t]→ R.

Formally A[s,t](ω) = qv(B(·)(ω), [s, t]) is, if it happens to exist, an Ft-measurable random

variable. A very astonishing fact now says that A[s,t] is actually deterministic for almost all

ω ∈ Ω. In fact it is true that A[s,t] = t − s a.s.. Thus, although the paths of Bt are “very

random”, their quadratic variations are completely deterministic. Actually, assuming we

could observe and measure the quadratic variation of a realization of a path of a Brownian

Motion (which causes technical problems), we could use this path as a watch: when the

quadratic variation reaches t, the time is t.

Since the proof of this fact needs some technical tools which go beyond the scope of this

book, we will prove a slightly weaker version, which will be good enough for our purposes.

For that we consider a partition of [s, t], P = (t0, t1, . . . , tn), t0 = s < t1 < . . . < tn < t,

and let A[s,t],P (ω) = qv(B(·)(ω), P, [s, t]). Then we let ‖P‖ tend to zero and prove that the

random variable A[s,t],P (·) converges in L2 to t− s, i.e. (see section B.4 for more detail) we

will show that

lim
‖P‖→0

E
(
(A[s,t],P − (t− s))2

)
= 0.

Remark : For better understanding we prefer to state arguments on the quadratic variation

in sequential form. Note that for a process Xt saying that

L2 − lim
‖P‖→0

qv(X(·)(·), P, [s, t]) = Y,

is equivalent to saying that for any sequence (Pn) of partitions of [s, t], Pn = (t
(n)
0 , t

(n)
1 , . . . , t

(n)
kn

),

with limn→0 ‖Pn‖ = 0 , it follows that

E

[ kn∑
i=1

(X
t
(n)
i
−X

t
(n)
i−1

)2 − Y

]2
→ 0.

Note also that for ||Pn|| → 0 the number kn has to increase to infinity. In order to avoid too

many indices we will always assume that kn = n.
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Theorem 2.2.5 . Let Pn = (t
(n)
0 , t

(n)
1 , . . . , t

(n)
n ) be a sequence of partition of the interval

[s, t] with limn→∞ ‖Pn‖ = 0. Then

n∑
i=1

(B
t
(n)
i
−B

t
(n)
i−1

)2 → t− s in L2.

Proof. Note that

E

[ n∑
i=1

(B
t
(n)
i
−B

t
(n)
i−1

)2 − (t− s)

]2


= E

[ n∑
i=1

[(B
t
(n)
i
−B

t
(n)
i−1

)2 − (t
(n)
i − t

(n)
i−1)]

]2


=
n∑

i,j=1

E
(

[(B
t
(n)
i
−B

t
(n)
i−1

)2 − (t
(n)
i − t

(n)
i−1)][(B

t
(n)
j
−B

t
(n)
j−1

)2 − (t
(n)
j − t

(n)
j−1)]

)
.( n∑

i=1

ai

)2

=
n∑

i,j=1

aiaj


If i 6= j we deduce that

E([(B
t
(n)
i
−B

t
(n)
i−1

)2 − (t
(n)
i − t

(n)
i−1)][(B

t
(n)
j
−B

t
(n)
j−1

)2 − (t
(n)
j − t

(n)
j−1)])

= E((B
t
(n)
i
−B

t
(n)
i−1

)2 − (t
(n)
i − t

(n)
i−1)) · E((B

t
(n)
j
−B

t
(n)
j−1

)2 − (t
(n)
j − t

(n)
j−1)) = 0.

[Independence and Proposition 2.2.1 ]

If i = j it follows from Proposition 2.2.2 that

E([(B
t
(n)
i
−B

t
(n)
i−1

)2 − (t
(n)
i − t

(n)
i−1)]2) = 2(t

(n)
i − t

(n)
i−1)2.

Thus

E

[ n∑
i=1

(B
t
(n)
i
−B

t
(n)
i−1

)2 − (t
(n)
i − t

(n)
i−1)

]2
 = 2

n∑
i=1

(t
(n)
i − t

(n)
i−1)2

≤ 2 max
i=1,...,n

|t(n)
i − t

(n)
i−1| ·

n∑
i=1

|t(n)
i − t

(n)
i−1|

= 2‖Pn‖ · (t− s) −→
n→∞

0. �
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We finally note that the cubic variation vanishes for almost all paths of the Brownian

Motion. The proof is similar to the proof of Theorem 2.2.5 and is therefore left to the reader.

Proposition 2.2.6 . Let Pn = (t
(n)
0 , t

(n)
1 , . . . , t

(n)
n ) be a sequence of partition of the

interval [s, t] with limn→∞ ‖Pn‖ = 0. Then

n∑
i=1

|B
t
(n)
i
−B

t
(n)
i−1
|3 → 0 in L2.
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2.3 Stochastic Integrals with Respect to the Brownian

Motion

We have to deal with the following problem. Let (Xt) be an adapted process on the filtered

space (Ω,F , (Ft),P) describing the price of a stock. An investor buys and sells during a

certain time period [s, t] shares of this stock. How do we compute the gains and losses of

the investor?

First, we have to define what an investment strategy is. Throughout this section we are

given a filtered probability space (Ω,F , (Ft),P), and as in the previous section we denote

expected values with respect to P by E(·).

Defintion. An elementary process is a process (Ht)t≥0 of the following form.

There are times t0, t1, . . . , tn, with 0 < t1 < . . . < tn = t, and random variables

h0, h1, . . . hn−1 so that hi is Fti-measurable and for t ≥ 0

Ht =
n−1∑
i=0

hi1[ti,ti+1)(t),

i.e. for ω ∈ Ω and i ∈ {0, 1, 2, . . . n − 1} chosen such that ti ≤ u < ti+1, it follows that

Hu(ω) = hi(ω).

The interpretation of this definition is obvious. At the times t0, t1, . . . , tn−1 the investor

changes his or her portfolio and holds during the time period [ti, ti−1) hi units of the stock.

The condition that hi has to be Fti-measurable is forced by the fact that the decision on

how many shares to hold at time ti can only be based on the history prior to ti.

Now, assuming that Hu =
∑n−1

i=0 hi1[ti,ti+1)(u) is an elementary process, we want to com-

pute the gain, respectively losses, this strategy generates during a time period [s, t]. The

gains occuring during the time period [0, t1] are h0(Xt1 − Xt0), the gains during the time

period [t1, t2] are h1(Xt2 −Xt1), etc.

More generally, the gains occuring during a time period [s, t] can be computed as follows.
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1) If there is an i ∈ {0, 1, . . . n− 1} so that ti ≤ s < t ≤ ti+1 the gains are

hi(Xt −Xs).

2) If there are i < j in {0, 1, . . . n} so that ti ≤ s < ti+1 ≤ tj ≤ t < tj+1 (let tn+1 = ∞)

then the occuring gains during [s, t] are:

hi(Xti+1
−Xs) +

j−1∑
`=i+1

h`(Xt`+1
−Xt`) + hj(Xt −Xtj).

These two formulae can be combined using the notation p ∨ q = max{p, q} and p ∧ q =

min{p, q} to the formula
n−1∑
i=0

hi(X(ti+1∨s)∧t −X(ti∨s)∧t).

This is exactly the formula which was introduced in Stochastic Calculus as the stochastic

integral of H with respect to X.

Defintion. Let (Xt) be an adapted process on the filtered space (Ω,F , (Ft),P) and H(·) =∑n−1
i=0 hi1[ti,ti+1)(·) be an elementary adapted process. Then we define for s < t the stochastic

integral of H with respect to x over the interval [s, t] to be

(2.13)

∫ t

s

HudXu =
n−1∑
i=0

hi(X(ti+1∨s)∧t −X(ti∨s)∧t).

We observe the following two properties of stochastic integrals.

Proposition 2.3.1 . Let (Xt) be an adapted process on the filtered space (Ω,F , (Ft),P).

1) If s < t, α, β ∈ R, and H and G are two elementary adapted processes then∫ t

s

αHu + βGudXu = α

∫ t

s

HudXu + β

∫ t

s

GudXu.

Moreover, this equality holds true for Fs-measurable random variables α, β.

2) If s < r < t and H is an elementary adapted process then∫ t

s

HudXu =

∫ r

s

HudXu +

∫ t

r

HudXu.
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The proof of 2.3.1 is simple and we leave it to the reader. The following observation says

that the family
∫ t

0
HsdXs is also a stochastic process.

Proposition 2.3.2 . Let (Xt) be an adapted process on the filtered space (Ω,F , (Ft),P)

and Ht be an elementary adapted process.

Then (
∫ t

0
HsdXs)t≥0 is an adapted process.

Proof. From Equation (2.13) it is clear that
∫ t

0
HsdXs is Ft-measurable. We are left to

show that the mapping

[0,∞)× Ω 3 (t, ω) 7→
(∫ t

0

HsdXs

)
(ω)

is B[0,∞) ⊗F -measurable.

To see this we first observe that we can assume that H is of the form Ht = h1[t1,t2) with

h being Ft1-measurable, since every elementary process is a finite sums of these even simpler

processes. Secondly we note that in this case

∫ t

0

HsdXs =


0 if t < t1

h(Xt −Xt1) if t1 ≤ t < t2

h(Xt2 −Xt1) if t2 ≤ t

= 1[t1,t2](t)h(Xt −Xt1) + 1(t2,∞)(t)h(Xt2 −Xt1),

and note that the map [0,∞) 3 (t, ω) 7→
(∫ t

0
HsdXs

)
(ω) can be written as product of sums

of B[0,∞) ⊗F -measurable maps. �

For the rest of this section we will restrict our attention to stochastic integrals with

respect to a Brownian Motion (Bt) and extend the notion
∫ t
s
HudBu to a more general class

of adapted processes H. Rather than thinking of a stochastic process being a family of



64 CHAPTER 2. STOCHASTIC CALCULUS, BROWNIAN MOTION

random variables defined (Ω,F ,P) indexed by t we will think of a process being a map

defined on the set [0,∞)× Ω.

For a subset A of [0,∞)× Ω and t ≥ 0 we call

(2.14) At = {ω ∈ Ω|(t, ω) ∈ A}

the t-cut of A.

Proposition 2.3.3 . Let B[0,∞)⊗F be the product σ-algebra of B[0,∞) and F as defined

in Proposition B.2.1 and in the examples mentioned thereafter in Appendix B.2. The set

of all A ∈ B[0,∞)⊗F which have the property that for all t ≥ 0 the t-cut of A is an element

of Ft forms a sub-σ-algebra of B[0,∞) ⊗ Ω.

We will call this σ-algebra the set of all progressively measurable sets on (Ω,F , (Ft),P)

and denote it by P.

Proof. We only need to note that for A ⊂ [0,∞) × Ω and t ≥ 0 it follows that ([0,∞) ×

Ω \ A)t = Ω \ At and that for a sequence (An) of subsets of [0,∞) × Ω it follows that

(
⋃
An)t =

⋃
Ant . �
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Proposition 2.3.4 .

1) All elementary adapted processes on (Ω,F , (Ft),P) are progressively measurable.

2) All continuous adapted processes on (Ω,F , (Ft),P) are progressively measurable.

Proof. To proof (1) we only need to consider a process H of the form Hu = h1[s,t)(u)

with 0 ≤ s < t < ∞ and h being Fs-measurable. For a measurable set B ⊂ R and a

v ∈ [0,∞) it follows now that

{(u, ω)|Hu(ω) ∈ B}v =


{ω|h(ω) ∈ B} if s ≤ v < t

Ω if v < s or t ≤ v and 0 ∈ B

∅ if v < s or t ≤ v and 0 6∈ B

which implies that {(u, ω)|Hu(ω) ∈ B}v ∈ Fv in all cases.

To show (2) we approximate a continuous adapted process H by elementary ones. For

n ∈ N define

H(n)
u =

n2n∑
i=0

Hi2−n1[i2−n,(i+1)2−n)(u).

It follows that for all ω ∈ Ω and u ≥ 0 limn→∞H
(n)
u (ω) = Hu(ω). Since the pointwise limit

of measurable maps is still measurable the claim follows. �

Remark. The reader might ask whether or not every adapted process is progressively

measurable. this is in general not true, but under some technical conditions on the filtered

space (Ω,F , (Ft),P) there is for every adapted process H a version H̃ (meaning that for all

t ≥ 0: Ht = H̃t almost surely) which is progressively measurable. But we do not want to

elaborate on that question and note that 2.3.4 provides a big enough class of progressively

measurable process.

We will fix a time T > 0 and consider only processes indexed over the time [0, T ].
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Definition. We denote by H2([0, T ]) the set of all progressively measurable processes

(Ht)0≤t≤T on the filtered space (Ω,F , (Ft)0≤t≤T ,P) for which the paths are square integrable

on [0, T ] almost surely, i.e. for almost all ω ∈ Ω∫ T

0

Ht(ω)2dt <∞,

and for which

E
(∫ T

0

H2
t dt
)
<∞.

For H ∈ H2([0, T ]) we put

‖H‖H2 = E1/2
(∫ T

0

H2
t dt
)
.

The set of all elementary processes Ht =
∑n−1

i=1 hi1[ti,ti+1), with 0 = ti < t1 < . . . tn = T ,

which lie in H2([0, T ]) are denoted by H2,e([0, T ]).

Note that H ∈ H2,e([0, T ]) if and only if the hi’s are square integrable.

Remark. Let λ[0,T ] be the uniform distribution on the interval [0, T ]. Consider the product

probability P ⊗ λ[0,T ] on the set Ω ⊗ [0, T ] furnished with the product σ-algebra F ⊗ B[0,T ]

(see Proposition B.2.4 in Appendix B.2). For a measurable f : Ω ⊗ [0, T ] → R it follows

that

‖f(·, ·)‖L2 = E1/2
λ[0,T ]⊗P(f 2(ω, t))

= E(1/2)
( 1

T

∫ T

0

f 2(ω, t)dt
)

=
1√
T
E(1/2)

(∫ T

0

f 2(ω, t)dt
)
.

Now we restrict the probablity λ[0,T ]⊗P to the sub algebra of progressively measurable sets.

Denote this restriction by λ[0,T ] ⊗ P|P .

Thus, we observe that H2([0, T ]) is equal to the space L2(P ⊗ λ[0,T ]|P), and ‖H‖H2 =
√
T‖H(·)(·)‖L2 H ∈ H2([0, T ]). Therefore ‖ · ‖H2 is a norm on H2([0, T ]) (see Theorem B.4.5

Appendix B.4) and the notion of convergence in H2([0, T ]) will refer to that norm.

We are now in the position to state our key observation.
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Theorem 2.3.5 (The basic Isometry).

The map

Φ : H2,e([0, T ]) 7→ L2(P), H 7→
∫ T

0

HtdBt,

is welldefined, meaning that
∫ T

0
HtdBt is an element of L2(P), the space of square integrable

maps on (Ω,F ,P) and Φ is an isometry on H2,e([0, T ]) into L2(P), meaning that

‖
∫ T

0

HtdBt‖L2 = E1/2
((∫ T

0

HtdBt

)2
)

= ‖H‖H2 , for all H ∈ H2,e([0, T ]).

Secondly, for 0 ≤ s < t ≤ T the map

Φ[s,t] : H2,e([0, T ]) 7→ L2(P), H 7→
∫ t

s

HudBu,

is a contraction, i.e.

‖
∫ t

s

HudBu‖L2 ≤ ‖H‖H2 , for all H ∈ H2,e([0, T ]).

Proof. For Ht =
∑n−1

i=1 hi1[ti,ti+1), with 0 = ti < t1 < . . . tn = T we note that

E
((∫ T

0

HtdBt

)2
)

= E
((n−1∑

i=0

hi(Bti+1
−Bti)

)2
)

= E
(n−1∑
i=0

h2
i (Bti+1

−Bti)
2
)

[
Since E(hihj(Bti+1

−Bti)(Btj+1
−Btj)) =

E(hi(Bti+1
−Bti)hjE((Btj+1

−Btj)|Ftj)) = 0 if i < j
]

=
n−1∑
i=0

E(h2
i )(ti+1 − ti)

= E
(n−1∑
i=0

h2
i (ti+1 − ti)

)
= E

(∫ T

0

H2
t dt
)
,

which implies the claim. �
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Theorem 2.3.6 (Density).

The set H2,e([0, T ]) is dense in H2([0, T ]), i.e. for every H ∈ H2([0, T ]) there is a sequence

H(n) ⊂ H2,e([0, T ]) so that

lim
n→∞

‖H −H(n)‖H2 = 0.

The proof of Theorem2.3.6 is somewhat technical and we will not present it. Secondly

it will actually be enough to think of the space H2([0, T ]) being the set of all progres-

sively measurable processes H for which there is a sequence (H(n) in H2,e([0, T ]) so that

limn→∞ ‖H −H(n)‖H2 = 0. We will prove later (see Proposition 2.3.8) that all continuous,

bounded and adapted processes are in that set.

Using Theorems 2.3.5 and 2.3.6 we are in the position to define
∫ t
s
HudBu for all H ∈

H2([0, T ]).
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Theorem 2.3.7 (Stochastic integrals with repect to (Bt) in H2([0, T ])).

Given 0 ≤ s < t ≤ T the map

Φ[s,t] : H2,e([0, T ])→ L2(P), H 7→
∫ t

s

HudBu

can be extended in a unique way to a map, still denoted by Φ[s,t],

Φ[s,t] : H ∈ H2([0, T ])→ L2(P),

so that Φ[s,t] is still a contraction on H2([0, T ]).

We denote ∫ t

s

HudBu = Φ[s,t](H), for H ∈ H2([0, T ]),

and call it also the stochastic integral of H with respect to (Bu) on [s, t].

Moreover, this extension has the following properties,

1) If s < t, H and G are in H2([0, T ]), and α and β are Fs-measurable random variables

so that αHu1[s,t](u) and βGu1[s,t](u) are still in H2([0, T ]), then∫ t

s

αHu + βGudBu = α

∫ t

s

HudBu + β

∫ t

s

GudBu.

2) If s < r < t and H ∈ H2([0, T ]) then∫ t

s

HudBu =

∫ r

s

HudBu +

∫ t

r

HudBu.

3 For H ∈ H2([0, T ]) the process (∫ t

0

HudBu

)
t∈[0,T ]

is a martingale.

Proof. Let H ∈ H2([0, T ]). By Theorem 2.3.6 we can choose a sequence H(n) ⊂ H2,e([0, T ])
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with limn→∞ ‖H−H(n)‖H2 = 0. By Theorem 2.3.5 this implies that the sequence
∫ t
s
H

(n)
u dBu

is a Cauchy sequence in L2(P), and thus by completness of the space L2(P) convergent to

some element y ∈L2(P) (see Appendix B.4). We first note that y does not depend on the

choice of the sequence H(n) ⊂ H2,e([0, T ]) as long as it converges to H with respect to ‖ ·‖H2 .

Indeed, if H̃(n) ⊂ H2,e([0, T ]), with limn→∞ ‖H − H̃(n)‖H2 = 0, then it follows that

limn→∞ ‖H(n) − H̃(n)‖H2 = 0. Thus it follows from Theorem 2.3.5 that

lim
n→∞

‖Φ[s,t](H
(n) − Φ[s,t](H̃

(n))‖L2 = 0

which implies that limn→∞ ‖y − Φ[s,t](H̃
(n))‖L2 = 0.

Letting for H ∈ H2([0, T ]),

Φ[s,t](H) = L2 − lim
n→∞

Φ[s,t](H
(n)),

we now deduce that Φ[s,t] is a welldefined map on H2([0, T ]) into L2(P).

In order to show that Φ[s,t] is a contraction as well as to show the claims (1) and (2)

we let H,G ∈ H2([0, T ]), and choose (H(n)), (G(n)) ⊂ H2,e([0, T ]) converging to H and G

respectively. We note that

‖Φ[s,t](H)− Φ[s,t](G)‖ = lim
n→∞

‖Φ[s,t](H
(n))− Φ[s,t](G

(n))‖L2

≤ lim
n→∞

‖H(n) −G(n)‖H2 [by Theorem 2.3.5 (2)]

= ‖H −G‖H2 ,

which shows that Φ[s,t] is a contraction. Secondly, applying Proposition 2.2.1 (1), we get for

two Fs-measurable maps α, β satisfying the requirements of the statement of the Theorem

Φ[s,t](αH + βG) = L2 − lim
n→∞

Φ[s,t](αH
(n) + βG(n))

= L2 − lim
n→∞

αΦ[s,t](H
(n)) + βΦ[s,t](G

(n)) = αΦ[s,t](H) + βΦ[s,t](G),

which implies (1). For s < r < t we deduce from Proposition 2.2.1 (2) that

Φ[s,t](H) = L2− lim
n→∞

Φ[s,t](H
(n)) = L2− lim

n→∞
Φ[s,r](H

(n))+ lim
n→∞

Φ[r,t](H
(n)) = Φ[s,r](H)+Φ[r,t](H),
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which implies (2).

In order to proof that Φ[s,t] is unique we assume that Φ̃[s,t] is also a contractive extension

and deduce that for H ∈ H2([0, T ]) and (H(n)) ⊂ H2,e([0, T ]) converging to H that

Φ[s,t](H) = L2 − lim
n→∞

Φ[s,t](H
(n)) = L2 − lim

n→∞
Φ̃[s,t](H

(n)) = Φ̃[s,t](H).

Finally we show that (
∫ t

0
HudBu)0≤t≤T is martingale. If H ∈ H2,e([0, T ]) this can be

easily seen (see Exercise....). In the general case we choose H(n) ⊂ H2,e([0, T ]) converging to

H and deduce from Proposition B.4.8 in Appendix B.4 for 0 ≤ s ≤ t ≤ T that that

E(Φ[0,t](H|Fs) = L2 − lim
n→∞

E(Φ[0,t](H
(n)|Fs) = L2 − lim

n→∞
(Φ[0,s](H

(n)) = �[0,s](H),

which proves (3) and finishes the proof of the Theorem. �

To get a better feeling for stochastic integrals we want to write the stochastic integral

of a continuous and bounded process with respect the Brownian Motion in a more concrete

way.

Proposition 2.3.8 . Let (Ht)t∈[0,T ] be a continuous and adapted stochastic process on

(Ω,F , (Fs)0≤s≤T ,P). Also assume that supt∈[0,T ] |Ht| ≤ c <∞ almost surely.

For n ∈ N let P (n) = (t
(n)
0 , t

(n)
1 , . . . , t

(n)
1 be a partition of [0, T ], with ‖P (n)‖ → 0, for

n→∞, and define H(n) by

H(n)
u =

n−1∑
i=0

Hti1[t
(n)
i ,t

(n)
i+1)

(u).

Then H(n) converges in H2([0, T ]) to H and, consequently it follows from Theorem 2.3.7

that ∫ t

s

HudBu = L2 − lim
n→∞

∫ t

s

H(n)
u dBu = L2 − lim

n→∞

n−1∑
i=0

Hti(B(t
(n)
i+1∨s)∧t)

−B
(t

(n)
i ∨s)∧t

).

Proof. For fixed ω ∈ Ω we deduce from the defintion of Riemann integrals that

lim
n→∞

∫ T

0

(Hu(ω)−H(n)
u (ω))2dt = 0.
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Thus the sequence of random variables (
∫ T

0
(Hu −H(n)

u )2dt) is almost sureley converging

to zero. Since
∫ T

0
(Hu −H(n)

u )2dt ≤ Tc2 the Majorized Convergence Theorem B.2.11 applies

and we deduce the claim. �

We will need one more extension of the stochastic integral.

Defintion. Hw
2 ([0, T ]) is the space of all progressively measurable processes (Ht)t∈[0,T ] for

which.

P
({
ω ∈ Ω :

∫ T

0

H2
u(ω)dt <∞

})
= 1.

Convergence in Hw
2 ([0, T ]) will be defined as follows. A sequence H(n) ⊂ Hw

2 ([0, T ]) is said

to converge to H ∈ Hw
2 ([0, T ]) if the sequence

∫ T
0

(Ht −H(n)
t )2dt converges in probability to

0.

Remark. Note that Hw
2 ([0, T ]) contains all continuous processes.

The following Lemma plays a key role for extending the stochastic integral to processes

in Hw
2 ([0, T ]).

Lemma 2.3.9 . Let (Ht)t∈[0,T ] be a process in H2([0, T ]), 0 ≤ s < t ≤ T , and ε, δ > 0.

Then

P
({∣∣∣∫ T

0

HudBu

∣∣∣ ≥ ε
})
≤ P

({∣∣∣∫ T

0

H2
udt
∣∣∣ ≥ δ

})
+

δ

ε2

Proof. First assume that H ∈ H2,e([0, T ]).

Define H̃ by

H̃u(ω) =

Hu(ω) if u ≥ s and
∫ u
s
H2
v (ω)dṽ ≤ δ

0 otherwise

Note that
∫ t
s
H̃2
udu ≤ δ. For ω ∈ Ω it follows that either Hu(ω) = H̃u(ω) for all u ∈ [s, t]

or that
∫ t
s
H2
udu ≥ δ. In the first case it follows from the definition of stochastic integrals for

elementary processes that
∫ t
s
Hu(ω)du =

∫ t
s
H̃u(ω)du.
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We therefore conclude that

P
({∣∣∣ ∫ T

0

HudBu

∣∣∣ ≥ ε
})

≤ P
({∣∣∣∫ T

0

H̃udBu

∣∣∣ ≥ ε
})

+P
({∣∣∣∫ T

0

H2
udu
∣∣∣ ≥ δ

})
1

ε2
E
((∫ T

0

H̃udBu

)2
)

+ P
({∣∣∣∫ T

0

H2
udu
∣∣∣ ≥ δ

})
[Inequality of Tschebyscheff (see Proposition B.4.1 in Appendix B.4)]

=
1

ε2
E
(∫ T

0

H̃2
udu
)

+ P
({∣∣∣∫ T

0

H2
udu
∣∣∣ ≥ δ

})
[By Theorem 2.3.5]

≤ δ

ε2
+ P

({∣∣∣∫ T

0

H2
udu
∣∣∣ ≥ δ

})
This proves the claim for elementary processes. In order to generalize it to an arbitrary

H ∈ H2([0, T ]) we first choose a sequence H(n) ⊂ H2,e([0, T ]) converging to H with respect

to ‖ · ‖H2 and note that then

lim
n→∞

P
({∣∣∣∫ T

0

H(n)
u dBu

∣∣∣ ≥ ε
})

= P
({∣∣∣∫ T

0

HudBu

∣∣∣ ≥ ε
})
, and

lim
n→∞

P
({∣∣∣∫ T

0

(H(n)
u )2du

∣∣∣ ≥ δ
})

= P
({∣∣∣∫ T

0

H2
udu
∣∣∣ ≥ δ

})
. �

Corollary 2.3.10 . Assume that H(n) ⊂ H2([0, T ]) is a Cauchy sequence with respect

to the convergence defined in Hw
2 ([0, T ]), i.e. for all ε > 0 there is an n ∈ N so that for

all k,m ≥ n

P
({∫ T

0

(H(k)
u −H(m)

u )2du > ε
})

< ε.

Then for all 0 ≤ s < t ≤ T the sequence
∫ t
s
H

(n)
u dBu with respect of convergence in

probability in the space L0(P), the space of all measurable functions on Ω.

Proof. Assume thatH(n) is a Cauchy sequence inH2([0, T ]) with respect to the convergence

defined in H ∈ Hw
2 ([0, T ]). Fix ε > 0 and choose δ = ε3/2. We can find n ∈ N so that for
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all m, k ≥ n

P
({∫ t

s

(Hu(k)−H(m)
u )2du > δ

})
< ε/2,

and deduce from Lemma 2.3.9 that

P
({∫ t

s

(H(k)
u −H(m)

u )dBu > ε
})
≤ P

({∫ t

s

(H(k)
u −H(m)

u )2du > δ
})

+
δ

ε2
= ε.

This shows that
∫ t
s
H

(n)
u dBu is a Cauchy sequence with respect to the convergence in probabil-

ity. Since L0(P) is complete with respect to convergence in probability (see Proposition B.4.3

in Appendix B.4) the claim follows. �

Now we are in the position to extend stochastic integration to the space Hw
2 ([0, T ]) using

similar arguments as in the proof of Theorem 2.3.7.
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Theorem 2.3.11 (Stochastic integrals with respect to (Bt) on Hw
2 ([0, T ])). Given 0 ≤

s < t ≤ T the map

Φ[s,t] : H2([0, T ])→ L2(P), H 7→
∫ t

s

HudBu

can be extended in a unique way to a map, still denoted by Φ[s,t],

Φ[s,t] : H ∈ Hw
2 ([0, T ])→ L0(P),

so that Φ[s,t] is continuous with respect to the convergence defined on Hw
2 ([0, T ]) and the

convergence in probability on L0(P) Here L0(P) denotes the measurable maps defined on

(Ω,mathcalF ) with convergence in probabilty.

We denote ∫ t

s

HudBu = Φ[s,t](H), for H ∈ Hw
2 ([0, T ]),

and call it also the stochastic integral of H with respect to (Bu) on [s, t].

Moreover this extension has the following properties,

1) If s < t, α, β are Fs-measurable, and H and G are in Hw
2 ([0, T ]) then∫ t

s

αHu + βGudBu = α

∫ t

s

HudBu + β

∫ t

s

GudBu.

2) If s < r < t and H ∈ Hw
2 ([0, T ]) then∫ t

s

HudBu =

∫ r

s

HudBu +

∫ t

r

HudBu.

Proof. We first show that H2([0, T ]) is dense in Hw
2 ([0, T ]) with respect to the convergence

defined in Hw
2 ([0, T ]). For H ∈ Hw

2 ([0, T ]) define Hn = max(n,H) (∈ H2([0, T ])). Then for

fixed ω ∈ Ω and u ∈ [0, T ] H
(n)
u (ω) converges to Hu(ω). Keeping ω still fixed we deduce

from the Majorized Convergence theorem applied to the uniform distribution on [0, T ] that∫ t
s
(Hu(ω)−H(n)

u (ω))2du converges to 0. Thus
∫ t
s
(Hu −H(n)

u )2du converges in probability to
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0.

If H ∈ Hw
2 ([0, T ]) we can find a sequence H(n) in H2([0, T ]) which converges to H, in

particular it is a Cauchy sequence with respect to the convergence defined in Hw
2 ([0, T ]). For

s < t it follows now from Corollary 2.3.10 that
∫ t
s
H

(n)
u dBu converges in probability to some

element y in L0(P).

From now on the proof is similar to the proof of Theorem 2.3.7, and we will therefore

only sketch the remaining part. The norm ‖ · ‖L2 used in the proof of Theorem 2.3.7 has to

be replaced by the metric d(f, g) = E(min{(|f − g|, 1}) which characterizes convergence in

probability in the space L0(P).

We first will have to note that above limit y does not depend on the chosen approximating

sequence H(n) and therefore we can put
∫ t
s
HdBu = y.

The continuity of Φ[s,t] on Hw
2 ([0, T ]) follows from the continuity of Φ[s,t] on H2([0, T ]) as

shown in Corollary 2.3.10, and claim (1) and (2) follow as in the proof of Theorem 2.3.7. �
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2.4 Stochastic Calculus, the Ito Formula

In this section we want to develop some basic principles of “Stochastic Calculus”. More pre-

cisely we want to formulate a version of the Fundamental Theorem of Calculus for stochastic

processes.

Let us first recall the Fundamental Theorem of Calculus and its proof.

Theorem 2.4.1 (The Fundamental Theorem of Calculus).

Assume f : [0, T ]→ R is continuously differentiable.

Then f(T )− f(0) =

T∫
0

f ′(t)dt.

Proof. Let P = {t0, t1, . . . , tn} be a partition of [0, T ], (0 = t0 < t1, . . . , tn = T ). Then

f(T )− f(0) =
n∑
i=1

f(ti)− f(ti−1)

=
n∑
i=1

∆ti
f(ti)− f(ti−1)

∆ti

[∆ti = ti − ti−1]

=
n∑
i=1

∆tif
′(t∗i )

[with t∗i ∈ [ti−1, ti] chosen by the Mean Value Theorem].

From the definition of Riemann integrals we deduce on the other hand that

T∫
0

g(t)dt = lim
‖P‖→0

n∑
i=1

∆tig(t∗i ) [with t∗i ∈ [ti−1, ti] arbitrary].

Thus, we get

f(T )− f(0) = lim
‖P‖→0

n∑
i=1

∆tif
′(t∗i ) =

T∫
0

f ′(t)dt. �
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We are given now a function g : R→ R, and a Brownian motion on (Ω,F , (Fs)0≤s<∞,P)

and want to write

g(BT )− g(B0)

as a stochastic integral. But in this case we encounter some differences to the deterministic

case.

Note that g(Bt) is a random variable on Ω i.e. g(Bt) : Ω 3 ω 7−→ g(Bt(ω)). Assuming g

being twice differentiable and bounded we obtain for a partition P = {t0, t1, . . . , tn} of [0, T ]

from Taylor’s expansion that

g(BT )− g(0) =
n∑
i=1

g(Bti)− g(Bti−1
)

=
n∑
i=1

g′(Bti−1
)(Bti −Bti−1

) +
n∑
i=1

1

2
g′′(ξi)(Bti −Bti−1

)2,

with ξi being an appropriately chosen random variable assuming its values between Bti−1

and Bti . If we let ‖P‖ → 0 then
n∑
i=1

g′(Bti−1
)(Bti − Bti−1

) converges by Proposition 2.3.8 in

L2 to
T∫

0

g′(Bt)dBt.

The problem is now the following: contrary to the deterministic case

(
i.e.

n∑
i=1

(ti − ti−1)2g′′(t∗i )

)
n∑
i=1

(Bti −Bti−1
)2g′′(Bti)

does in general not converge in L2 to zero. Indeed, by Theorem 2.2.5 it follows that

n∑
i=1

(Bti −Bti−1
)2 −→ T in L2.

Thus, we will have supplementary terms in the stochastic version of the Fundamental

Theorem of Calculus.

In order to simplify as much as possible the following analysis, let us assume for the

moment that g : R → R is three times continuously differentiable and has a bounded first,
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second and third derivative, say

sup
x∈R

max{|g′(x)|, |g′′(x)|, |g′′′(x)|} = c <∞.

This will make the derivations easier and more transparent. Later we will state more general

results.

Using Taylor’s expansion up to the third term we can write

g(BT )− g(0) =
n∑
i=1

g(Bti)− g(Bti−1
)(2.15)

=
n∑
i=1

g′(Bti−1
)[Bti −Bti−1

] (I)

+
1

2

n∑
i=1

g′′(Bti−1
)[Bti −Bti−1

]2 (II)

+
1

6

n∑
i=1

g′′′(ξi)(Bti −Bti−1
)3 (III)

where P = {t0, t1, . . . , tn} is a partition of [0, T ] and the ξi’s are appropriately chosen random

variables between Bti−1
and Bti .

We consider a sequence of partitions of [0, T ] (P (n))n∈N, P (n) = (t
(n)
0 , t

(n)
1 , . . . t

(n)
n ), with

‖P (n)‖ → 0, and analyse what happens to the terms I, II, and III if n tends to ∞.

First we note that by Proposition 2.2.6 in Section 2.2 it follows that

(2.16) E
(( n∑

i=1

|g′′(ξi)||Bt
(n)
i
−B

t
(n)
i−1
|3
)2
)
≤c2E

(( n∑
i=1

|B
t
(n)
i
−B

t
(n)
i−1
|3
)2
)
→0, if n→∞.

This means that the third term (III) in (2.15) vanishes.

Secondly, it follows from Proposition 2.3.8 of Section 2.3 that

(2.17) L2 − lim
n→∞

n∑
i=1

g′(B
t
(n)
i−1

)[B
t
(n)
i
−B

t
(n)
i−1

] =

∫ T

0

g′(Bt)dBt,

The following Lemma will handle the term (II) in (2.15). It can be seen as a generalization

of Theorem 2.2.5 in Section 2.2.
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Lemma 2.4.2 . Let f : R→ R be continuous and bounded.

Then

L2 − lim
n→∞

n−1∑
i=0

f(B
t
(n)
i

)(B
t
(n)
i+1
−B

t
(n)
i

)2 =

∫ T

0

f(Bt)dt.

Note that the left side of the equation has to be understood pointwise in the Riemann

sense: for ω ∈ Ω
( ∫ T

0
f(Bt)dt

)
(ω) is the integral of the continuous function [0, T ] 3 t 7→

f(Bt(ω)) .

Proof of Lemma 2.4.2. Assume |f(x)| ≤ c, whenever x ∈ R, for some c > 0. For ∈ N

define the following two random variables.

Y (n) =
n−1∑
i=0

f(B
t
(n)
i

)(B
t
(n)
i+1
−B

t
(n)
i

)2 and

Z(n) =
n−1∑
i=0

f(B
t
(n)
i

)(t
(n)
i+1 − t

(n)
i )

Since for i < j we deduce that

E
(
f(B

t
(n)
i

)
[
(B

t
(n)
i+1
−B

t
(n)
i

)2 − (t
(n)
i+1 − t

(n)
i )
]
f(B

t
(n)
j

)
[
(B

t
(n)
j+1
−B

t
(n)
j

)2 − (t
(n)
j+1 − t

(n)
j )
])

= E
(
f(B

t
(n)
i

)
[
(B

t
(n)
i+1
−B

t
(n)
i

)2 − (t
(n)
i+1 − t

(n)
i )
]
f(B

t
(n)
j

)E
([

(B
t
(n)
j+1
−B

t
(n)
j

)2 − (t
(n)
j+1 − t

(n)
j )
]∣∣∣F

t
(n)
j

))
= 0,

it follows that

E
((
Y (n) − Z(n)

)2
)

= E
((n−1∑

i=0

f(B
t
(n)
i

)[(B
t
(n)
i+1
−B

t
(n)
i

)2 − (t
(n)
i+1 − t

(n)
i )]

)2
)

= E
(n−1∑
i=0

f 2(B
t
(n)
i

)[(B
t
(n)
i+1
−B

t
(n)
i

)2 − (t
(n)
i+1 − t

(n)
i )]2

)
≤ c2E

(n−1∑
i=0

[(B
t
(n)
i+1
−B

t
(n)
i

)2 − (t
(n)
i+1 − t

(n)
i )]2

)
→ 0, as shown in the proof of Theorem 2.2.5.
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Secondly, we note that by the definition of Riemann integrals, it follows that for each

ω ∈ Ω Z(n)(ω) converges to
∫ T

0
f(Bt(ω))dt. Since |Z(n)(ω)| ≤ cT for all ω ∈ Ω we deduce

from the Theorem of Majorized Convergence that Z(n) converges in L2 to
∫ T

0
f(Bt(ω))dt.

Thus by the triangle inequality

‖Y (n) −
∫ T

0

f(Bt)dt‖L2 ≤ ‖Y (n) − Z(n)‖L2 + ‖Z(n) −
∫ T

0

f(Bt)dt‖L2 → 0, for n→∞. �

Using now the equations (2.16) and (2.17) as well as the result of Lemma 2.4.2 we deduce

from equation (2.16) that

g(BT )− g(0) =

T∫
0

g′(Bs)dBs +
1

2

T∫
0

g′′(Bs)ds

for functions g : R → R being 3 times continuously differentiable with bounded third and

second derivatives.

Using now the more general stochastic integral as defined in Theorem 2.3.11 for elements

of Hw
2 ([0, T ]) we deduce with a little more work but essentially the same ideas the following

formula.

Theorem 2.4.3 (Special Ito-formula).

Assume g(·, ·) : [0,∞)× R → R is (t, x) 7→ g(t, x) is once continuously differentiable in t

and twice continuously differentiable in x then

g(t, Bt)− g(0, B0) =

t∫
0

∂g

∂s
(s, Bs)ds+

t∫
0

∂g

∂x
(s, Bs)dBs +

1

2

t∫
0

∂2g

∂x2
(s, Bs)ds

Remark. Ito’s formula allows us to find
∫ t

0
g(Bs)dBs as follows.

Assume g is continuously differentiable, and let G be an antiderivative of g. Then the

formula of Ito implies that

G(Bt)−G(0) =

∫ t

0

g(Bs)dBs +
1

2

∫ t

0

g′(Bs)ds.
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Thus ∫ t

0

g(Bs)dBs = G(Bt)−G(0)− 1

2

∫ t

0

g′(Bs)ds.

We now want to generalize the notion of stochastic integrals. Instead of integrating with

respect to only the Brownian Motion we introduce integration with respect to “diffusion

processes”, a class of processes we will use to model stock prices.

Definition. Let (Xt), and (Yt) be two processes so that their restriction to [0, T ] is in

Hw
2 ([0, T ]) for any T ≥ 0. Recall that this means that they are progressively measurable and

P
({∫ T

0

X2
udu <∞

})
= P

({∫ T

0

Y 2
u du <∞

})
= 1.

Let Z0 be F0-measurable.

The process Zt with

(2.18) Zt = Z0 +

∫ t

0

Xudu+

∫ t

0

YudBu.

is called a diffusion process.

We also write instead of (2.18)

(2.19) dZt = Xtdt+ YtdBt.

Remark. Formally the definition of Equation (2.19) is given by Equation (2.18). Nev-

ertheless (2.19) has a more intuitive interpretation: Changes of Zt over small time periods

consist on the one hand of the deterministic “drift term” Xtdt and on the other hand of the

random “diffusion term” YtdBt.

As already mentioned, diffusion processes will be our model for stock prices. Therefore

we will have to define stochastic integration with respect to these processes.

Definition. A progressively measurable process (Ht) is called weakly square integrable with

respect to a diffusion process (Zt), were Zt is given by

Zt = Z0 +

∫ t

0

Xudu+

∫ t

0

YudBu

if for all T > 0 it follows that
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P
({∫ T

0

(HuXu)
2du <∞

})
= P

({∫ T

0

(HuYu)
2du <∞

})
= 1.

Note that this means that for all T > 0 the processes (HuXu) and (HuYu) are elements of

Hw
2 (0, T ]).

Therefore we can define the stochastic integral of (Hu) with respect to (Zu) on the interval

[s, t] by

(2.20)

∫ t

s

HudZu =

∫ t

s

HuXudu+

∫ t

s

HuYudBu

Theorem 2.3.11 of Section 2.3 can be easily extended.

Proposition 2.4.4 . Given a diffusion process dZt = Xtdt+ YtdBt,

1) If s < t, α, β are Fs-measurable, and H and G are weakly square integrable with

respect to Zt then∫ t

s

αHu + βGudZu = α

∫ t

s

HudZu + β

∫ t

s

GudZu.

2) If s < r < t and H is square integrable with respect to Zt then∫ t

s

HudZu =

∫ r

s

HudZu +

∫ t

r

HudZu.

Remark. On one hand we defined in Equation (2.13) of Section 2.3 the stochastic integral

of an elemantary adapted process with respect to a general adapted process. We have to

verify that in the case of H being an elemntary process and Z being a diffusion process

the definition in (2.13) coincides with the definition given in Equation (2.20). Secondly, the

definition of Equation (2.13) was derived from our intuition on how gains and losses should

be defined for a strategy H and we have to make sure that Equation (2.20) still coincides

with that intuition.
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Thus let Hu =
∑n−1

i=0 hi1[ti,ti+1) be an elementary adapted process being square integrable

with respect to Z. We observe that

∫ t

s

HudZt =

∫ t

s

HuXudu+

∫ t

s

HuYudBu

[in the sense of Equation (2.20)]

=
n−1∑
i=0

∫ (ti+1∨s)∧t

(ti∨s)∧t
hiXudu+

∫ (ti+1∨s)∧t

(ti∨s)∧t
hiYudBu

=
n−1∑
i=0

hi

∫ (ti+1∨s)∧t

(ti∨s)∧t
Xudu+ hi

∫ (ti+1∨s)∧t

(ti∨s)∧t
YudBu

=
n−1∑
i=0

hi(Z(ti+1∨s)∧t − Z(ti∨s)∧t)

=

∫ t

s

HudZt

[in the sense of Equation (2.13)]

Now we can state the Ito Formula for diffusion processes.

Theorem 2.4.5 (General Ito formula).

Assume Zt is a diffusion process dZt = Xt dt + Yt dBt, (Xt)t≥0, and g : [0,∞) × R →

R (t, x) 7→ g(t, x) is continuously differentiable in t and twice continuously differen-

tiable in x then

g(T, ZT )− g(0, Z0) =

T∫
0

∂g

∂t
(t, Zt)dt+

T∫
0

∂g

∂x
(t, Zt)dZt +

1

2

T∫
0

∂2g

∂x2
(t, Zt)Y

2
s ds

with
T∫

0

∂g

∂x
(t, Zt)dZt =

T∫
0

∂g

∂x
(t, Zt)Xt dt+

t∫
0

∂g

∂x
(t, Zt)Yt dBt.

Remark: Here is an informal way to remember the laws of stochastic calculus:
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Now using the second Taylor expansion in differential form for dZt = Xt dt+ Yt dBt

d(g(t, Zt)) =
∂

∂t
g(t, Zt)dt+

∂

∂x
g(t, Zt)dZt︸ ︷︷ ︸

= ∂
∂x
g(t,Zt)Xtdt+

∂
∂x
g(t,Zt)YtdBt

+
1

2

∂2

∂t2
g(t, Zt)d

2t︸ ︷︷ ︸
=0

+
∂2

∂t∂x
g(t, Zt)dt dZt︸ ︷︷ ︸

=0

+
1

2

∂2

∂x2
g(t, Zt)d

2Zt︸ ︷︷ ︸
= 1

2
∂2

∂x2
g(t,Zt)Y 2

t dt

.
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Law: precise meaning:

(dt)2 = 0 lim
‖Pn‖→0

s=t
(n)
0 <t

(n)
1 <···<t(n)

n =t

n∑
i=1

(t
(n)
i − t

(n)
i−1)2 = 0

dt dBt = 0 lim
‖Pn‖→0

s=t
(n)
0 <t

(n)
1 <···<t(n)

n =t

n∑
i=1

|t(n)
i − t

(n)
i−1| |Bt

(n)
i
−B

t
(n)
i−1
| = 0

(dBt)
2 = dt lim

‖Pn‖→0

s=t
(n)
0 <t

(n)
1 <···<t(n)

n =t

n∑
i=1

(B
t
(n)
i
−B

t
(n)
i−1

)2 = t− s.

After this rather abstract and technical introduction of the basics of stochastic processes

we are in the position to introduce a model for the stock price (St). We are given a probability

space (Ω,F ,P) and a filtration (Ft)t≥0.

(St)t≥0 is then a stochastic process satisfying a “stochastic differential equation” of the

following form

dSt(ω) = µ(t, ω, St(ω))St(ω)dt+ ν(t, ω, St(ω))St(ω)dBt.

Or, in integral form is equation can be written as:

St(ω)− S0 =

t∫
0

µ(s, ω, Ss(ω))Ss(ω)ds+

t∫
0

ν(s, w, Ss(ω))Ss(ω)dBs.

where (µ(t, ·, St(·))t≥0 (the drift) and (ν(t, ·, St(·))t≥0 (volatility) are adapted piecewise con-

tinuous processes whenever (St(·))t≥0 has these properties.

Note, that we haven’t given an “explicit model” for the stock price yet. Since “St”

appears on both sides of the equation, it is only an “implicit” description. The following

theorem on stochastic differential equations gives conditions which insure the uniqueness and

existence of a solution:
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Theorem 2.4.6 . Assume (µ(t, ·, Xt(·)))t≥0 and ν(t, ·, (Xt(·))t≥0 are (Ft)t≥0 adapted

piecewise continuous, locally square integrable, whenever (Xt)t≥0 has these properties. Also

assume the following “Lipschitz condition” in the third argument, i.e. ∃K > 0 so that for

all t ≥ 0, ω ∈ Ω

|xµ(t, ω, x)− yµ(t, ω, y)| ≤ K|x− y|

|xν(t, ω, x)− yν(t, ω, y)| ≤ K|x− y|.

Then the stochastic differential equation

dXt = µ(t, ·, Xt)Xt dt+ ν(t, ·, Xt)Xt dBt

has a unique solution (Xt)t≥0i.e. Xt −X0 =

t∫
0

µ(s, ·, Xs)Xs ds+

t∫
0

ν(s, ·, Xs)Xs dBs

 .
Example: Let us assume the drift µ and the volatility ν being constant. What is the

solution of the following SDE ?

(*) dSt = µSt dt+ νSt dBt

We apply Ito’s formula to g(t, x) = ln x

d ln(St) =
dSt
St
− 1

2

1

S2
t

ν2S2
t dt =

dSt
St
− ν2

2
dt

Thus by solving for dSt
St

and integrating we derive that

t∫
0

dSs
Ss

= ln(St)− ln(S0) +
ν2

2
t.

On the other hand (∗) implies that

t∫
0

dSt
Ss

= µt+ νBt.
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which implies that

ln(St)− ln(S0) +
ν2

2
t = µt+ νBt

or

St = S0 · eνBt+(µ− ν
2

2
)t.



Chapter 3

The Black-Scholes Model

3.1 The Black-Scholes Equation

In this section we want to solve the following problem:

Consider a general derivative, which pays F (ST ) at time T , if the price of the underlying

asset (we call it stock) at time T is ST . We assume that the price of the stock satisfies

the models we described in the previous sections. What is an arbitrage free value of the

derivative at previous times t, 0 ≤ t < T?

Let us first precisely state our assumptions.

We denote the stock price at time t, 0 ≤ t ≤ T , by St, S0 being a constant and we assume

St satisfies the following stochastic differential equation

(A1) dSt = µtSt dt+ νtSt dBt,

in integral form this means:

(A1’) St − S0 =

t∫
0

µuSudu+

t∫
0

νuSu dBu.

(Bt)t≥0 is a Brownian motion, with respect to a filtration (Ft)t≥0, and µt and νt are stochastic

processes, adapted to (Ft), and possibly depending on t as well as on St, i.e.

µt = µ(St, t) and νt = ν(St, t).

89
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We assume (A1) respectively (A1’) have a unique solution. Conditions for the existence of

unique solutions were given in Theorem 2.4.6

Secondly there is a riskless bond with fixed interest rate r which is continuously com-

pounded. If βt denotes the value of the bond at, time 0 ≤ t ≤ T , it follows that

(A2) dβt = rβt dt, or βt = β0e
rt.

Finally, we are given a derivative which pays F (ST ) at time T . For the moment we only

assume that F : R→ R is measurable. A further growth condition on F will be introduced

later. We want to find an arbitrage free price of this derivative at any time 0 ≤ t < T .

We have to make the following further assumptions :

(A3) For each time 0 ≤ t ≤ T there exists a unique arbitrage-free price for the derivative,

which we denote by Vt. Furthermore, Vt can be written as

Vt = f(St, t)

(i.e. Vt depends only on t and the stock price St at time t) and

f : [0,∞)× [0, T )→ R

is twice continuously differentiable in the first and once continuously differentiable in

the second variable.

We will use the following notation for derivatives often used in physics :

f ′(x, u) =
∂

∂x
f(x, u)

f ′′(x, u) =
∂2

∂x2
f(x, u)

ḟ(x, u) =
∂

∂u
f(x, u).

Finally, we have to clarify the possibilities of an investor. An investor can purchase any real

number of bonds and units of the underlying stock. His portfolio at time t is a pair (at, bt),

where at denotes the number of shares of a stock and bt denotes the number of bonds he

owns at time t. The process of pairs (at, bt)0≤t≤T is called a strategy. Since decisions on

investments can not depend on future events we have to assume that
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(A4) (at)0≤t≤T and (bt)0≤t≤T are processes on (Ω,F ,P) which are adapted to the filtration

(Ft)0≤t≤T .

Secondly we assume (in order to be able to apply stochastic calculus)

(A5) (at)0≤t≤T is wekly square integrable with respect to St (as introduced in Section 2.4

and (bt)0≤t≤T is integrable with respect to dbt (in the usuual sense).

Therefore the integrals

t∫
s

au dSu, and

t∫
s

bu dβu, 0 ≤ s < t ≤ T,

exist and represent the gains/losses during the timeperiod [s, t], caused generated by the

holdings in stocks and bonds respectively.

Definition: A strategy (at, bt)0≤t≤T is called self-financing if the value of the portfolio at

any time t equals to the value of the portfolio at time 0 augmented by gains or decreased by

losses up to time t. In a formula that means

(1) (atSt + btβt︸ ︷︷ ︸
value at t

)− (a0S0 + b0β0︸ ︷︷ ︸
value at 0

) =

t∫
0

au dSu +

t∫
0

bu dβu︸ ︷︷ ︸
gain/loss

or in differential form

(2) d(atSt + btβt) = at dSt + bt dβt.

I.e. whenever the investor increases his position in stocks he will decrease his position in

bonds by exactly the same value and vice versa. Now, we are in the position to formulate

our last assumption

(A6) There is a self-financing strategy (at, bt)0≤t≤T , satisfying (A4) and (A5) which replicates

the derivative, i.e. at any time 0 ≤ t ≤ T .
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Vt = Value of portfolio (at, bt)

= atSt + btβt.

Remark: Up to this point, the reader might not see the justification of the above introduced

assumptions. Why for instance, should it be possible to replicate the derivative? Why

should a replicating strategy satisfy the conditions in (A5)? Why should the value Vt of the

derivative at time t only depend on t and St but not on Su, for some other time u < t? Why

should this dependence be differentiable? At this time, we cannot give a satisfying answer to

these questions yet. But, under the assumption that the stock price (St) satisfies (A1), that

the bond price satifies (A2), and that the function F satisfyes a certain growth condition,

we will find a function f(S, t) satisfying (A3) and a replicating and self financing strategy

(at, bt). From the existence of such a strategy it follows that Vt = f(St, t) = atSt + btβt is

the only arbitragefree price of our derivative.

After this set-up we are ready for the computations. First we use Ito’s formula for

dVt = df(St, t).

dVt = df(St, t)(3.1)

= f ′(St, t)dSt + ḟ(St, t)dt+
1

2
f ′′(St, t)(dSt)

2

= f ′(St, t)ν(St, t)St dBt+[f ′(St, t)µ(St, t)St + ḟ(St, t) +
1

2
f ′′(St, t)ν(St, t)

2S2
t ]dt

[by (A1), note (dSt)
2 = ν2(St, t)S

2
t dt].

On the other hand it follows from (A6) that

Vt − V0 = atSt + btβt − (a0S0 + b0β0)(3.2)

=

t∫
0

au dSu +

t∫
0

bu dβu

[using (A1)].
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In differential form,

dVt = at dSt + btdβt(3.3)

= atµ(St, t)St dt+ atν(St, t)St dBt + btrβt dt

= atν(St, t)St dBt + [atµ(St, t)St + rbtβt]dt.

Comparing Equation 3.1 with Equation 3.3, we observe that these equation are satisfied if

we demand that

(3.4) f ′(St, t)ν(St, t)St = atν(St, t)St [the “dBt-term” of (3.1) and (3.2) respectively]

and

f ′(St, t)µ(St, t)St + ḟ(St, t) +
1

2
f ′′(St, t)ν(St, t)

2S2
t = atµ(St, t)St + btrβt(3.5)

[the “dt-term” of of (3.1) and (3.2) respectively].

Equation 3.4 cancels to

(3.6) at = f ′(St, t).

This is the hedging equation. Once f is known f ′(St, t) is the number of shares of the stock

the investor has to buy in order to replicate the derivative. Solving equation (A6) for bt we

obtain

(3.7) bt =
1

βt
[f(St, t)− atSt] =

1

βt
[f(St, t)− f ′(St, t)St]

Inserting (3.6) and (3.7) into (3.5) we derive that

ḟ(St, t) +
1

2
f ′′(St, t)ν(St, t)

2S2
t = rf(St, t)− rf ′(St, t)St,

or

(3.8)
1

2
ν(St, t)

2S2
t f
′′(St, t) + rStf

′(St, t) + ḟ(St, t)− rf(St, t) = 0.

Thus, in order to find the function F (t, S) satisfying (3.8) we will have to solve the following

initial value problem (BSE) (the Black-Scholes Equation).
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(BSE) Find f : [0,∞)× [0, T ] −→ R satisfying the partial differential equation:

1

2
ν(S, t)2S2f ′′(S, t) + rSf ′(S, t) + ḟ(S, t)− rf(S, t) = 0,

assuming for t = T the values f(S, T ) = F (S).

Conclusion. We reduced the problem of finding the arbitrage free value of a derivative to the

problem of solving the (deterministic) initial value problem (BSE). Secondly, we deduce that

once we found f(·, ·), we can hedge (replicate) the derivative by the following self-financing

strategy:

at = f ′(St, t), and bt =
1

βt
[f(St, t)− f ′(St, t)St].



3.2. SOLUTION OF THE BLACK-SCHOLES EQUATION 95

3.2 Solution of the Black-Scholes Equation

In this section we want to solve the initial value problem (BSE) obtained in the previous

section. We will assume that the volatility ν is constant.

1

2
ν2S2f ′′(S, t) + rSf ′(S, t) + ḟ(S, t)− rf(S, t) = 0, 0 ≤ t ≤ T, 0 < S(BSE)

with f(S, T ) = F (S).

We will proceed in the following way. Substituting the variables appropriately we will trans-

form (BSE) into the well known Heat Equation (HE).

h′′(x, τ) = ḣ(x, τ)(HE)

h(x, 0) = h0(x).

Then we will present the methods to solve the Heat equation. Finally, reversing all the

substitutions will lead us to a solution of (BSE). We first make the following a change of

variables:

S = S(x) = ex (or x = ln(S))(3.9)

t = t(τ) = T − 2τ

ν2

(
or τ =

1

2
ν2(T − t)

)
.

Note that the second equation in 3.9 means that we “inverted time”.

We let

(3.10) g(x, τ) = f(S(x), t(τ)) = f

(
ex, T − 2τ

ν2

)
,

and note that the initial conditions becomes

(3.11) g(x, 0) = f(S(x), T ) = F (ex).
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Computing the relevant derivatives of g(x, t) we obtain

g′(x, τ) = f ′(S, t)S,

g′′(x, τ) = f ′(S, t)S + f ′′(S, t)S2,

quad[Note that
∂S

∂x
= S]

ġ(x, τ) = − 2

ν2
ḟ(ex, t).

The partial differential equation written in terms of x, τ and g(x, τ) becomes

ν2

2
g′′(x, τ)− ν2

2
g′(x, τ) + rg′(x, τ)− ν2

2
ġ(x, τ)− rg(x, τ) = 0

or after multiplication by 2
ν2

g′′(x, τ) +

(
2r

ν2
− 1

)
g′(x, τ)− 2r

ν2
g(x, τ) = ġ(x, τ).

Putting k = 2r
ν2 we obtain

(3.12) g′′(x, τ) + (k − 1)g′(x, τ)− kg(x, τ) = ġ(x, τ).

Secondly we let

(3.13) g(x, τ) = eαx+βτh(x, τ)

and try to find the right choice for α and β in order to obtain (HE).

The relevant derivatives of g(x, τ) can be written as follows

g′(x, τ) = eαx+βτ [αh(x, τ) + h′(x, τ)]

g′′(x, τ) = eαx+βτ [α2h(x, τ) + 2αh′(x, τ) + h′′(x, τ)]

ġ(x, τ) = eαx+βτ [βh(x, τ) + ḣ(x, τ)].

The partial differential equation (3.12) becomes (after cancelling the factor eαx+βτ on both

sides)

α2h(x, τ) + 2αh′(x, τ) + h′′(x, τ) + (k − 1)αh(x, τ) + (k − 1)h′(x, τ)− kh(x, τ)

= βh(x, τ) + ḣ(x, τ)
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or

h′′(x, τ) + (2α + k − 1)h′(x, τ) + (α2 + (k − 1)α− k − β)h(x, τ) = ḣ(x, τ).

Now we can choose α, β so that the factors of h′ and h vanish, i.e.

α = −k − 1

2
, and(3.14)

β = α2 + (k − 1)α− k =

(
k − 1

2

)2

− (k − 1)2 − k = −1

4
(k + 1)2.

We now arrived to the Heat Equation

(3.15) h′′(x, τ) = ḣ(x, τ)

with the initial function

(3.16) h(x, 0) = h0(x) = e−αxg(x, 0) = e−αxF (ex)

This is the “one dimensional heat-equation” (in one variable x).

Interpretation: Insulated wire has at time 0 the temperature distribution T0(x)

One wants to know the temperature distribution T (x, t) at some time t > 0. From laws in

physics one can deduce that T (x, t) has to satisfy

T ′′(x, t) = cṪ (x, t),

where c is called the conductivity of the wire.

Proposition 3.2.1 . h(x, t) = 1
2
√
πt
e−x

2/4t, i.e. the density of N(0, 2t) is a solution of

h′′(x, t) = ḣ(x, t).
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Proof. Simply compute the derivatives

ḣ(x, t) =
1

2
√
πt

[
x2

4t2
− 1

2t

]
e−x

2/4t

h′(x, t) =
1

2
√
πt

[
− x

2t

]
e−x

2/4t

h′′(x, t) =
1

2
√
πt

[
x2

4t2
− 1

2t

]
e−x

2/4t

and realize that h′′(x, t) = ḣ(x, t). �

Proposition 3.2.2 .

a) If h(x, t) is a solution of the equation h′′ = ḣ and c ∈ R then its translation by c,

i.e. the function (x, t) 7→ h(x− c, t) is also a solution.

b) If h1(x, t), h2(x, t), . . . , hn(x, t) are solutions of h′′ = ḣ and if α1, α2, . . . , αn ∈ R,

then
n∑
i=1

αihi(x, t) is also a solution.

In particular
n∑
i=1

αih(x− ci, t) is solution if h(x, t) is one.

Proposition 3.2.3 . Let h0 : R→ R be continuous and assume that

∞∫
−∞

c2|h0(c)| · e−
(x−c)2

4t dc <∞ for all t > 0.

Then 1
2
√
πt

∞∫
−∞

h0(c) · e−
(x−c)2

4t dc is solution of h′′ = ḣ.

Proof. Define

h(x, t) =

∞∫
−∞

h0(c)
1

2
√
πt
e−

(x−c)2
4t dc.
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The integrability condition on h0 allows us to interchange ∂
∂t

as well as ∂
∂x

and ∂2

∂x2 and∫
. . . dc with taking the integral with respect to c (see Exercis.....). This means together

with Proposition 3.2.1 that

ḣ(x, t) =
1

2
√
πt

∫ ∞
−∞

d

dt
h0(c)e−

(x−c)2
4t dc

=
1

2
√
πt

∞∫
−∞

h0(c)

[
(x− c)2

4t2
− 1

2t

]
e−(x−c)2/4tdc and

h′′(x, t) =
1

2
√
πt

∫ ∞
−∞

d2

dx2
h0(c)e−

(x−c)2
4t dc

=
1

2
√
πt

∞∫
−∞

h0(c)

[
(x− c)2

4t2
− 1

2t

]
e−(x−c)2/4tdc for t > 0 and x ∈ R,

Proposition 3.2.4 . Assume h0 : R→ R is continuous and assume that

1

2
√
πt

∞∫
−∞

|h0(c)|e−
(x−c)2

4t dc <∞ for all t > 0

then lim
t→0

1
2
√
πt

∞∫
−∞

h0(c)e−
(x−c)2

4t dc = h0(x) for all x ∈ R.

Proof. Let ε > 0 and x ∈ R. Using the continuity of h0 we find δ > 0 so that for all x̃ ∈ R

with |x̃− x| < δ it follows that |h0(x)− h0(x̃)| < ε. We write

∞∫
−∞

h0(c)
1

2
√
πt
e−(x−c)2/4tdc

=

x+δ∫
x−δ

h0(c)
1

2
√
πt
e−(x−c)2/4tdc

+

∞∫
x+δ

h0(c)
1

2
√
πt
e−(x−c)2/4tdc +

x−δ∫
−∞

h0(c)
1

2
√
πt
e−(x−c)2/4tdc.
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Now, whenever η ≥ δ2, it follows that 1
2
√
πt
e−η/4t ↓ 0, whenever t ↓ 0. Thus

(3.17)

∞∫
x+δ

|h0(c)| 1

2
√
πt
e−(x−c)2/4tdc−→

t→0
0 and

x−δ∫
−∞

|h0(c)| 1

2
√
πt
e−(x−c)2/4tdc−→

t→0
,

by monotone convergence. In particular (replace h0(c) by the constant 1) it follows that
∞∫

x+δ

1
2
√
πt
e−(x−c)2/4tdc−→

t→0
0 and

x−δ∫
−∞

1
2
√
πt
e−(x−c)2/4tdc−→

t→0
0. Thus we conclude that

lim sup
t→0

∣∣∣∣∣∣ 1

2
√
πt

x+δ∫
x−δ

h0(c)e−
(x−c)2

4t dc− h0(x)

∣∣∣∣∣∣
= lim sup

t→0

∣∣∣∣∣∣ 1

2
√
πt

x+δ∫
x−δ

h0(c)e−
(x−c)2

4t dc− 1

2
√
πt

x+δ∫
x−δ

h0(x)e−
(x−c)2

4t dc

∣∣∣∣∣∣
[We are using that

1

2
√
πt
e−

(x−c)2
4t is a density]

≤ lim sup
t→0

1

2
√
πt

x+δ∫
x−δ

|h0(c)− h0(x)|e−
(x−c)2

4t dc

+ lim sup
t→0

1

2
√
πt

∞∫
x+δ

|h0(x)|e−(x−c)2/4tdc

+ lim sup
t→0

1

2
√
πt

x−δ∫
−∞

|h0(x)|e−(x−c)2/4tdc

≤ ε.

Since ε > 0 arbitrary claim follows. �

Conclusion

The solution of the heat equation

h′′(x, t) = ḣ(x, t) withh(x, 0) = h0(x)

is

h(x, t) =
1

2
√
πt

∞∫
−∞

h0(c)e−
(x−c)2

4t dc,
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Assuming the integrability condition

1

2
√
πt

∞∫
−∞

|h0(c)|c2e−
(x−c)2

4t dc <∞ for all t <∞.

Remark: Given two functions f, g the function x 7→
∞∫
−∞

f(z)g(x− z)dz is called the convo-

lution of f and g denoted by f ∗ g.

Using convolutions one can write the solution to the heat equation as

h(x, t) = h0 ∗ ρ2t(x) where ρ2t = 1
2
√
πt
e−

x2

4t (density of N(0, 2t)). For t = 0 “h0 ∗ ρ0” has

to be interpreted as h0 (which is justified by Proposition 3.2.4).

We now turn to the computation of f(s, t) by tracing back our substitutions

f(S, t) = g

(
ln(S),

1

2
ν2(T − t)

)
[by (3.10)]

=
[(6)]

eα ln(S)e
1
2
βν2(T−t)h

(
ln(S),

1

2
ν2(T − t)

)
[by (3.13)]

= eα ln(S)e
1
2
βν2(T−t) 1√

2πν2(T − t)
·
∞∫

−∞

h0(ξ) · e−
(ξ−ln(S))2

2ν2(T−t) dξ [Proposition (3.2.4)]

= eα ln(S)e
1
2
βν2(T−t) 1√

2πν2(T − t)

∞∫
−∞

e−αξF (eξ) · e−
(ξ−ln(S))2

2ν(T−t) dξ

= e
1
2
βν2(T−t) 1√

2πν2(T − t)

∞∫
−∞

F (Seη) · e−αη−
η2

2ν2(T−t)dη

[Substitute η = ξ − ln(S)]

= e
1
2
βν2(T−t) · e

1
2
α2ν2(T−t) 1√

2πν2(T − t)

∞∫
−∞

F (Seη)e
− [η+αν2(T−t)]2

2ν2(T−t) dη

[Quadratic completion]

= e−r(T−t)
1√

2πν2(T − t)

∞∫
−∞

F (S · er(T−t)e−
ν2

2
(T−t)+z)e

− z2

2ν2(T−t)dz

[
Substitute η = z − αν2(T − t) = z +

2r − ν2

2ν2
ν2(T − t) = z +

(
r − ν2

2

)
(T − t)

]
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Now we deduce from the choice of α and β (3.14) that β + α2 = 1
4
(−(k + 1)2 + (k − 1)2) =

−k = − 2r
ν2 and obtain

(3.18) Vt = f(St, t) =
e−r(T−t)√

2πν2(T − t)

∞∫
−∞

F (Ste
r(T−t)e−

ν2

2
(T−t) · ez)e−

z2

2ν2(T−t)dz

We can represent Vt as an expected value involving the Browinan Motion. For that note

that
1√

2πν2(T − t)
e
− z2

2ν2(T−t)

is the density of the distribution of ν(BT −Bt). Thus we deduce that

(3.19) Vt = f(St, t) = e−r(T−t)E
(
F (Ste

r(T−t)e−
ν2

2
(T−t)+ν(BT−Bt))

)
.

in particular for t = 0 we obtain

(3.20) V0 = e−rTE(F (S0e
rT e−

ν2

2
T+νBT )) =

e−rT√
2πν2T

∞∫
−∞

F (S0e
rT e−

ν2

2
T · ez)e−

z2

2ν2T dz.
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3.3 Discussion and Application of the Black-Scholes

Formula

Let us first observe that as in the case of futures (Section 0.2) and as in the case of the log-

binomial model (Section 1.3)we arrived to the follwoing conclusion. The value of a derivative

in the Black Scholes Model can be interpreted as the discounted expected value of the pay-off

function with respect to a risk neutral distribution. Indeed, the value of a derivative, paying

F (ST ) at time T , is at time 0 worth

(3.21) V0 = e−rTE(F (erTS0 · e−
1
2
ν2T+νBT )).

We define S̃t = ertS0e
− 1

2
ν2t+νBt , 0 ≤ t ≤ T . This is the log-normal process with the same

volatility ν as St but with the drift r, the drift of a riskless bond. Since the process Mt =

S0e
− 1

2
ν2t+νBt is a martingale (see Proposition 2.2.3), we deduce that for 0 ≤ t < u ≤ T

E(S̃u|Ft) = er(u−t)S̃t.

Thus the expected yield of S̃t equals to the yield of the riskless bond. We call therefore (S̃t)

the riskneutral version of (St). Using S̃t the value of a derivative can now be writeen as

(3.22) V0 = e−rTE(F (S̃T )).

Using Equation 3.20 of Section 3.2 we can compute the value of a European call (F (S) =

(S −K)+) and a European put (F (S) = (K − S)+) (Exercise....).
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Proposition 3.3.1 . For a European call and put, with expiration date T and exercise

price K, the value at time 0 ≤ t ≤ T is

C(S, t) = SN(d)−Ke−r(T−t)N(d− ν
√
T − t)

and

P (S, t) = Ke−r(T−t)N(−d+ ν
√
T − t)− SN(−d) respectively,

where

N(d) =
1√
2π

d∫
−∞

e−x
2/2dx, and

d =
log(S/K) +

(
r + 1

2
ν2
)

(T − t)
ν
√
T − t

.

Proposition 3.3.2 (Asymptotic behavior of C(S,t))).

a) If S � K (call is “out of money”), thus log(S/K) � 0 and d � 0, and we deduce

C(S, t) ≈ 0.

b) If S � K (call is “in the money”) then log(S/K) � 0, d � 0 and N(d) ≈ 1. In

that case we deduce C(S, t) ≈ S −Ke−r(T−t), which is the value of a future with the

same expiration date and exercise price.

We now turn to four important functions associated with a derivative paying F (S) if at

time T the stock price is S.

First note that the value of a derivative

Vt = f(St, t) = e−r(T−t)E(F (Ste
r(T−t)e−

ν2

2
(T−t)+ν(BT−Bt)))

does not only depend on t and St but also on the interest rate r and the volatility ν and



3.3. DISCUSSION OF THE BLACK AND SCHOLES FORMULA 105

we can think of f being a function of t, S, but also of the interstrate r and the volatility ν,

f(St, t, r, ν) = f(St, t). 1) The “delta” of F :

∆F (S, t) =
∂

∂S
f(S, t, r, ν)

2) the “gamma” of F :

ΓF (S, t) =
∂2

∂S2
f(S, t, r, ν)

3) the “theta” of F

θF (S, t) = − ∂

∂t
f(S, t, r, ν)

4) the “vega” of F :

vF (S, t) =
∂

∂ν
f(S, t, r, ν)

5) the “rho” of F :

ρF (S, t) =
∂

∂r
f(S, t, r, ν).

We already encountered ∆F during the derivation of the Black-Scholes formula:

at = ∆F (S, t) is the number of shares of a stock, an investor has to hold at time t, together

with bt = (Vt − atSt)/βt bonds, if he wants to replicate the derivative.

Any two of the considered three securities (bond, stock, derivative) form a complete

market, which means as in the discrete case that we can replicate any of these three securities

by the two others. If he wants to replicate the bond for example, one needs to hold Vt
bt

units

of the derivative and −atSt
bt

units of the stock (solve Vt = atSt + btβt for βt). These strategies

are called “∆-hedging”. They have one big problem: they demand a continuous, practically

impossible, adaptation of the portfolio. Thus, one has to approximate the ∆-hedging by only

finitely many portfolios. There is a trade off between increased number of transactions, which

on one hand increases the accuracy, but also increases on the other hand the transaction

costs. The function ΓF represents the curvature of f as a function on S and can be used for

refined hedging strategies.

Finally ρF and vF represent the dependence of f on r and ν. Usually the interest rate

r and the volatility ν are only known up to errors ∆r and ∆ν. The interest rate could for
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example change before the exercise date and also the volatility can only be estimated from

past data. Thus ρF and vF can be used to estimate the possible error of f

f(S, t, r + ∆r, ν + ∆ν)− f(S, t, r, ν) ≈ ρF∆r + vF∆ν.

We finally want to compute the “∆ of a call”

∆call(S, t) :=
∂

∂S
C(S, t).

Proposition 3.3.3 .

∆call(S, t) = N(d)

=
1√
2π

[log(S/K)+(r+ 1
2
ν2)(T−t)]/ν

√
T−t∫

−∞

e−x
2/2 dx.

Proof.

∂

∂S
C(S, t) =

∂

∂S
[SN(d)−Ke−r(T−t)N(d− ν

√
T − t)]

= N(d) + SN ′(d)
∂

∂S
d−Ke−r(T−t)N ′(d− ν

√
T − t) ∂

∂S
(d− ν

√
T − t)

= N(d) +
∂d

∂S

[
SN ′(d)−Ke−r(T−t)N ′(d− ν

√
T − t)

]
.

In order to verify the formula we will show that the term in above brackets vanishes. Note

that N ′(d) = 1√
2π
e−d

2/2.

Dividing [. . . . . .] by

N ′(d− ν
√
T − t) =

1√
2π
e−

[d−ν
√
T−t]2

2 =
1√
2π
e−

d2

2
+dν
√
T−t− ν

2

2
(T−t)
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we get:

[. . .]/N ′(d− ν
√
T − t) = Se−dν

√
T−t+ ν2

2
(T−t) −Ke−r(T−t)

= Se− log(S/K)−(r+ 1
2
ν2)(T−t)+ ν2

2
(T−t) −Ke−r(T−t)[

recall that d =
log(S/K) + (r + 1

2
ν2)(T − t)

ν
√
T − t

]
= Ke−r(T−t) −Ke−r(T−t) = 0.



108 CHAPTER 3. THE BLACK-SCHOLES MODEL

3.4 Black-Scholes Formula for Dividend Paying Assets

A. Continuous dividends

Let us first consider the simplest payment structure. Suppose that in a time dt the stock

pays out a dividend D0Stdt, with D0 being a constant. Using the arbitrage argument the

price must fall by the amount of the dividend payment, St satisfies the following modified

stochastic differential equation:

dSt = (µt −D0)St dt+ νtSt dBt.

One might expect that since µt does not effect the option price, and that since St satisfies the

same equation with µt−D0 instead of µt we will arrive to the same option-price. This is not

the case. Indeed our replicating portfolio (at, bt)0≤t≤T satisfies now the following equation

Vt − V0 =

t∫
0

asdSs︸ ︷︷ ︸
gain/loss

from
stock

+

t∫
0

bsrβsds︸ ︷︷ ︸
gain/loss

from
bonds

+

t∫
0

D0Ssase
r(t−s)ds

︸ ︷︷ ︸
gains from

reinvested dividends

or, in differential form,

dVt = at dSt + bt dβt +D0Stat dt.

This looks like Equation 3.3 of Section 3.1 containing the additional term D0Stat dt.

Using now exactly the same arguments as in Section 3.1 we arrive to the following partial

differential equation
1

2
ν2S2f ′′ + (r −D0)Sf ′ + ḟ − rf = 0,

and using the same techniques as in Section 3.2 we derive the value of a derivative:

(3.23) Vt = f(St, t) =
e−(r−D0)(T−t)√

2πν2(T − t)

∞∫
−∞

F (Ste
(r−D0)(T−t)e−

ν2

2
(T−t) · ez)e−

z2

2ν2(T−t)dz

and for t = 0:

(3.24) V0 = f(S0, 0) =
e−(r−D0)T

√
2πν2T

∞∫
−∞

F (Ste
(r−D0)T e−

ν2

2
T · ez)e−

z2

2ν2T dz
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B. Discrete dividend payments

Suppose now that during the life time of an option there is one dividend payment at time

0 < td < T which is d · St−d where St−d
is the price of the underlying asset just before time td.

If we denote by St+d
the price of the underlying asset right after the payment we conclude

St−d
= St+d

+ dSt−d
,

otherwise there would be an arbitrage possibility.

Now let f(St, t) be the value of the option at time t. Since the owner of an option does

not receive a dividend we must have

f(St−d
, t−d ) = f(St+d

, t+d ),

otherwise there would be again a arbitrage possibility.

So we have for any S

f(S, t−d ) = lim
t↑td

f(S, t) = f(S(1− d), t+d ) = lim
t↓td

f(S(1− d), t).

In other words, since the path

t 7→ f(St, t)

is almost surely continuous, the function in two variables

(S, t) 7→ f(S, t)

cannot be continuous at t = td.

We can find the solution in two steps, each time using the methods of solutions presented

in the Sections 3.1 and 3.2

©1 For td ≤ t < T we find f(S, t) as explained in Sections 3.1 and 3.2.

©2 Then we define a new options whose exercise date is td and whose payoff function is

F̃ (S) := f(S(1− d), td).
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For this derivative we find the value f̃(S, t), 0 ≤ t ≤ td.

Finally we put for 0 ≤ t ≤ T

f(S, t) =

f̃(S, t) if t < td

f(S, t) if t ≥ td.

Note that

(3.25) lim
t↑td

f(S, t) = F̃ (S) = f(S(1− d), td) = lim
t↓td

f(S(1− d), t).



Chapter 4

Interest Derivatives

4.1 Term Structure

4.2 Continuous Models of Interest Derivative

4.3 Examples

111



112 CHAPTER 4. INTEREST DERIVATIVES



Chapter 5

Martingale Method, Stopping Times

and American Options

We start in this chapter with a more general and abstract approach to evaluate claims. A

general claim will be simply a function f : Ω → R and f(ω) represents the payoff if ω ∈ Ω

happens. A Valuation assigns to each such claim a number, its value at time 0. We will

specify some reaonable conditions on valuations and will conclude that evaluating claims is

equivalent to find equivalent probabilities which turn the price processes of the underlying

assets into risk neutral processes. This generalizes observations we already made in the

log-binomial and the log-normal case.

In the following sections we concerned with pricing American style options. Thes options

allow the holder to choose the exercise date within a specified exercise period. In order to

define mathematically allowable exercise strategies we need the concept of stopping times.

Stopping times will be introduced and discussed in section 5.2. In the sections 5.3 and 5.4

we finally develope a pricing theory for American style options.

113
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5.1 Martingales and Option Pricing

In this section we want to present a general approach to determine arbitrage free values of

options. We will deduce the following principle:

The problem of finding arbitrage free values of options is equivalent to the prob-

lem of finding an equivalent probability which turns the discounted prices of the

underlying assets into martingales.

The notions of equivalent probabilities and discounted price processes will be introduced later.

In order to formulate and prove this principle we will loosely follow ideas first developped

by Harrison and Kreps [HK], Harrison and Pliska [HP] and Kreps [K]. Inspired by Black’s

and Schole’s formula for options for log-normal processes they formulated a pricing theory

for contingent claims within a more general frame.

We consider several stochastic adapted processes (S
(1)
t )0≤t≤T , (S

(2)
t )0≤t≤T , . . . (S

(n)
t )0≤t≤T

on a filtered probability space (Ω,FP, (Ft)0≤t≤T ). We assume that F = FT . We think of

these processes being the prices of n underlying assets. As usual Ft represents the σ-algebra

of all events whose outcome is known by the time t. Since F0 represents the presence we

assume that for all A ∈ F0 either P(A) = 0 (A did not happen) or P(A) (A happened).

In order to simplify computations we will first introduce a “change of currency”. We

denote by r > 0 the, continuously compounded, interest rate of a riskless bond during the

time period [0, T ]. Our new currency is a “riskless bond which pays one Euro at the end

of the considered time period”. We will represent prices using the correct number of these

zero bonds. Only at the very end of our discourse we will translate our results back into the

usual currency. The “new prices” of our underlying assets are now given by

(5.1) Ŝ
(i)
t = er(T−t)S

(i)
t .

A general claim or option is now simply a function f : Ω → R, which we assume to

be FT -measurable and bounded. Later we will pass to unbounded claims. Note that for

example the pay-off of a call within the Black Scholes model is unbounded from above, since
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a log-normal random variable is unbounded. We think of f(w), ω ∈ Ω, being the pay-off (or

liability) at time T , if ω occurs.

Remark. If f is Ft-measurable for some t < T , then the gain/loss caused by f will be

already determined at time t and we might distinguish between “the option which pays f(w)

at time t” and “the option which pays f(w) at some other time t̃ > t”. But in our new

bond-currency this distinction is unnecessary since the interest rate (in terms of bonds) is

zero.

Defintion. For t ∈ [0, T ] the vectorspace of all bounded Ft measurable functions f : Ω→ R

is denoted by

L∞(Ω , Ft).

A valuation at time 0 is defined to be a map

V0 : L∞(Ω,FT )→ R.

The interpretation is as follows: V0(f) is the value assigned to the security f at time 0.

We want to enumerate some reasonable properties a valuations should have. As we will

see, these properties are dictated by the fact that we want to avoid arbitrage possibilities.

(V1) Linearity

If f1, f2 ∈ L∞(Ω,FT ), α1, α2 ∈ R, and 0 ≤ t ≤ T then

V0(α1f1 + α2f2) = α1V0(f1) + α2V0(f2).

(V2) Positivity

If f ∈ L∞(Ω,FT ) and 0 ≤ t ≤ T , then

(a) f ≥ 0 a.s. ⇒ V0(f) ≥ 0.

(b) f ≥ 0 a.s. and P({f > 0}) > 0⇒ V0(f) > 0.

An element A ∈ FT with P(A) = 0 has the property that χA ≥ 0 a.s. and χA ≤ 0 a.s.

Thus condition (V1) implies that

(5.2) V0(χA) = 0 ⇐⇒ P(A) = 0
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Remark. Let us derive for example (V1) from basic arbitrage arguments:

Assume that for some choice of α1, α2 f1, f2 ∈ L∞(Ω,FT )

V0(α1f1 + α2f2) 6= α1V0(f1, t) + α2V0(f2, t).

Then an investor could proceede in the following way.

– Case 1: V0(α1f1 + α2f2) < α1V0(f1, t) + α2V0(f2, t).

Go short α1 times the option f1 and α2 times the option f2 and buy one unit of

(α1f1 + α2f2).

– Case 2: V0(α1f1 + α2f2) > α1V0(f1, t) + α2V0(f2, t).

Go short one unit of (α1f1 + α2f2) and buy α1 times the option (f1) and α2 times the

option (f2).

In both cases the riskless gain is |V0(α1f1 + α2f2)− α1V0(f1, t) + α2V0(f2, t)|.

The next condition simply says that a zero bond is allways worth a zero bond.

(V3) Normalization V0(1) = 1.

Finally we need a condition which cannot be deduced completely from a simple arbitrage

argument.

(V4) Monotone Continuity

Assume f1, f2, . . . are in L∞(Ω,FT ) and f1 ≤ f2 ≤ f3 ≤ · · · . Furthermore assume that

f = lim
n→∞

fn = sup
n∈N

fn is also bounded. Then

sup
n∈N

V0(fn) = V0(f).

Remark.

Assume f1, f2, . . . are in L∞(Ω,FT ) and f1 ≤ f2 ≤ f3 ≤ · · · and f = limn→∞ fn exists

a.s. and is an element of L∞(Ω,Ft).
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Already (V2) implies that supn∈N V0(fn) ≤ V0(f). Indeed, since f ≥ fn, for all n, it

follows that V0(fn) ≤ V0(f), and thus supn∈N V0(fn) ≤ V0(f)

Let us discuss what it would mean if this inequality were strict and ∆ = V0(f) −

supn∈N V0(fn) > 0.

In that case an investor could take an arbitrarily small ε > 0 (much smaller than ∆) and

choose N ∈ N so large that EP(f − fN) < ε. The strategy of selling at t = 0 one unit of

f and buying one unit of fN would lead to a fixed gain of at least ∆ at time t = 0 and a

liability of f − fN at time T whose expected value is smaller than ε.

In other words he or she could make a fixed gain at time 0, namely at least V (f, t) −

supn∈N V (fn, t) with a risk of having a loss at time T whose expected value he or she can

choose to be as small as he or she wants it to be. Following Kreps [K] this condition (V4) is

referred to as “No Free Lunch”.

We will now show that a valuation at time 0 is given by an equivalent probability Q.

Definition. A probability Q on (Ω,FT ) is called equivalent to P if for any set A ∈ FT

P(A) = 0 ⇐⇒ Q(A) = 0.

We say that P and Q are equivalent if P is absolutely continuous to Q and Q is absolute

continuous to P, i.e. if for any A ∈ F

P(A) = 0⇔ Q(A) = 0.

In that case we can apply the Theorem of Radon-Nikodym (Theorem B.3.1 in Ap-

pendix B.3) and deduce that there is a P integrable g : Ω→ R so that

Q(A) = EP(gχA), for allA ∈ F .
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Proposition 5.1.1 . There is a one to one correspondance between all valuations at

0 satisfying (V1)-(V4) and all probabilities Q on FT which are equivalent to P. This

correspondance is given by

Q(A) = V0(χA), A ∈ FT ,

if V0 is a valuation at 0 satisfying (V1)-(V4), and by

V0(f) = EQ(f), f ∈ L∞(Ω,FT ),

if Q is a probability equivalent to P.

Proof of Proposition 5.1.1. For A ∈ F we put

Q(A) = V0(A)

and have first to show that Q is a probability on F which is P-equivalent.

By (V2) and the following remark it follows that Q(φ) = V0(χφ) = 0, (V3) implies that

Q(Ω) = V0(1) = 1, and by (V2), 0 ≤ Q(A) ≤ 1, for all A ∈ F . If A1, A2, A3, . . . ∈ F are

disjoint it follows

Q

(⋃
n∈N

An

)
= V0(χ∪n∈NAn)

= sup
N∈N

V0(χ∪Nn An) [by (V4)]

= sup
N∈N

N∑
n=1

V0(χAn) [by (V2)]

= sup
N∈N

N∑
n=1

Q(An) =
∞∑
n=1

Q(An).

The fact that Q is P-equivalent follows again from (V1) and the observation 5.2.

Conversely if Q is a probabilty equivalent to P, we put V0(f) = EQ(f), for f ∈ L∞(Ω,FT ),

and deduce (V1) from the linearity of expected values, (V2) from the monotonicity of ex-

pected values and the assumption that Q is equivalent, (V3) from the fact that Q(Ω) = 1,
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and fianlly we deduce (V4) from the Monoton Convergence Theorem (Theorem B.2.10 in

Appendix B.2). �

Until now, we did not use the (discounted) stock prices (Ŝ
(i)
t )0≤t≤T . We have to formulate

a condition which states that the valuation at 0 of an option is consistent with the stock prices.

Therefore we want to consider for t ∈ [0, T ] the random variable Ŝ
(i)
t as an option, namely

the claim which pays Ŝ
(i)
t . Since Ŝ

(i)
t might not be bounded (like in the log-normal case for

example) we will first extend V0 to a larger class of functions.

Let f : Ω → R be measurable, and bounded from below almost surely which means that

there is a c ∈ R so that f ≥ c almost surely. If V0 is a valuation at 0 satisfying (V1)-(V4)

we put

Ṽ0(f) = sup
g∈L∞(Ω,FT ),g≤f

V0(g).

Remark.

This supremum could be +∞. Secondly, we note that Ṽ0(f) = limn→∞ V0(max(f, n))

(Exercise....). And thirdly we note that one can deduce from condition (V4) that Ṽ0 = V0 on

the space L∞(Ω,FT ) (Execise....), i.e. Ṽ0 is an extension of V0 onto the set of all measurable

functions whith are bounded from below. Therefore we will continue to denote Ṽ0 simply by

V0.

Since V0 is determined by an equivalent probability Q it follows that

V0(f) = sup
g∈L∞(Ω,FT ),g≤f

EQ(g) = lim
n→∞

EQ(max(f, n)) = EQ(f).

We will now assume that our discounted stock prices (Ŝ
(i)
t ) are bounded from below

(usually by 0) and consider the following condition on V0.

(V5) If 0 ≤ u ≤ t ≤ T , i = 1, 2 . . . n and A ∈ Fu it follows that V0(χAŜ
(i)
t ) = V0(χAŜ

(i)
u ).

Remark. Let us give an argument why the absence of (V5) would lead to arbitrage pos-

sibilities. Assume for example V0(χAŜ
(i)
u ) < V0(χAŜ

(i)
t ). An investor would buy one unit of

χAŜ
(i)
u and sell one unit of χAŜ

(i)
t at time 0 and have a gain of V0(χAŜ

(i)
t )−V0(χAŜ

(i)
u ). In the
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future he can avoid any loss by proceeding as follows. If at time t A does not happens the

option he bought becomes worthless, but also his liability towards the buyer of the option

he sold vanishes. If A happens he recieves at time u the amount of Ŝ
(i)
u which he can use to

buy one unit of the i− th stock, and cover therefore his liability at time t.

Theorem 5.1.2 . There is a one to one correspondance between all valuations at 0

satisfying (V1)-(V5) and the set of all equivalent probabilities Q under which the discounted

stock prices are martingales.

This correspondance is the same as in Proposition 5.1.1.

A probability Q which is equivalent to P and turns the discounted stock prices into

martingales will be called a equivalent martingale probability for the processes (Ŝ
(i)
t ),

i = 1, 2, . . . n.

Remark. Note that we did not assume that the stock prices (Ŝ
(i)
t ) are integrable with

respect to P. This is not necessary. But they turn out to be integrable with respect to any

equivalent martingale probability.

Proof of Theorem 5.1.2. Assume V0 satisfies (V1)-(V5) and let Q be the corresponding

probability given by Proposition 5.1.1. First we have to show that (Ŝ
(i)
t ) is integrable with

respect to Q. Indeed choose −c, c > 0, to be a lower bound of (Ŝ
(i)
t ) and note that

EQ(|Ŝ(i)
t |) ≤ c+ EQ(Ŝ

(i)
t )

= c+ lim
n→∞

EQ(min(Ŝ
(i)
t , n)) [Monoton Convergence]

= c+ lim
n→∞

V0(min(Ŝ
(i)
t , n))

= c+ V0(Ŝ
(i)
t )

= c+ S
(i)
0 <∞ [Apply (V5) to u = 0, and A = Ω]

For u < t and A ∈ Fu it follows now from (V5) that

EQ(χAŜ
(i)
t ) = V0(χAŜ

(i)
t ) = V0(χAŜ

(i)
u ) = EQ(χAŜ

(i)
u ).
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Since Ŝ
(i)
u is Fu-measurable this implies by the definition of conditional expectations that

EQ(Ŝ
(i)
t |Fu) = Ŝ

(i)
u almost surely. �

We now want to describe valuations for other times t and define a valuation process to

be a map

V : L∞(Ω,Ft)× [0, T ]→ L∞(Ω,FT ), (f, t) 7→ Vt(f),

so that for t ∈ [0, T ] the function Vt(f) is Ft-measurable. Vt(f) has to interpreted as the

value of the claim f given all information up to time t. For t = 0 V0(f) has to be a constant

almost surely and will therefore be identified with this constant.

The following condition can easily be deduced from an arbitrage argument (see Exer-

cise...)

(V6) For t ∈ [0, T ] and f ∈ L∞(Ω,FT ) it follows that

V0(χAVt(f)) = V0(χAf).

I.e. at time 0 a claim which pays f if A ∈ Ft occured must have the same value as a claim

which pays Vt(f) if A occured.

Similar as in Theorem 5.1.2 we can prove the following statement.

Theorem 5.1.3 . Assume V : L∞(Ω,FT ) × [0, T ] → L∞(Ω,FT ) is a valuation process

which satisfies (V6) and for which V0 satisfies (V1)-(V5).

Let Q be the corresponding equivalent martingale measure. Then it follows for f ∈

L∞(Ω,FT ) and t ∈ [0, T ]:

Vt(f) = EQ(f |Ft).

We finally want to translate our formula for pricing options back to the case where our

currency are Euros and not bonds. We consider an option which pays at time t ≤ T the

amount g(ω) in Euros, where g is Ft-measurable. Since our currency consists of Euros,

the time of the pay-off becomes relevant. In terms of bonds this amount equals to f(ω) =

er(T−t)g(ω) bonds. If W (g, t, s) is the value of this option at time s ≤ t measured in Euros,
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its value measured in bonds is denoted by V (f, s) = V (f, t, s). Now let Q be the P-equivalent

probability measure associated to V , turning Ŝ
(i)
t = er(T−t)S

(i)
t into a martingale.

Then it follows

W (g, t, s) = e−r(T−s)V (f, s)(5.3)

= e−r(T−s)EQ(f |Fs)

= e−r(T−s)EQ(er(T−t)g|Fs) = e−r(t−s)EQ(g|Fs).

For evaluating American options it will turn out that we are in particular interested in

derivatives of the form

g = 1AG(St)

with A ∈ Ft and with pay-off taking place at time t. In that case

(5.4) W (f, t, s) = e−r(t−s)EQ(1AG(St)|Fs) = e−r(t−s)EQ(1AG(e−r(T−t)Ŝt)|Fs).

Remark. Theorems 5.1.2 and 5.1.3 leave the following two questions unanswered:

1) Given the stock prices, is it always possible to find a valuation satisfying (V1)-(V5),

or equivalently is there always an equivalent martingale measure?

The answer to this question depends on the model we are considering. Within the

discrete model we showed that the existence of an equivalent martingale probability

is equivalent to the absence of arbitrage (this is how Theorem 1.1.3. can be inter-

preted). We actually computed the (unique) equivalent martingale probability for the

Binomial model. Also, it can be shown that our results on option pricing in the Black

Scholes model can be interpreted as a result on existence and uniqueness of equivalent

martingale measures. In the literature we find more results connecting the absence of

arbitrage to the existance of equivalent martingale measures. Here are some examples:

a) For finitely many trading times: Dalang, Morton, and Willinger (1989) [DMW]

b) For continuous trading times and continuous and bounded price processes: Del-

baen (1992) [D1]
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c) For continuous trading time and bounded price processes with right continuous

paths having left limits: Delbaen and Schachermayer [DS2].

d) For continuous trading time and unbounded price proccesses with right continuous

paths having left limits: Delbaen and Schachermayer [DS3] .

The second question which comes in mind is the following:

2) Are the equivalent martingale probabilities unique? Equivalently: are arbitrage-free

option prices unique?

Unfortunately, only in few cases they are unique, the most important examples are the

log-binomial and the Black Scholes model. This is the reason why, despite all its flaws,

the Black-Scholes model is still the best and the most often used model.

There are several attempts to force uniqueness of Q by requiring some functionals Φ(Q)

to be minimal. These functionals for example measure the “distance between P and

Q”. Here is an example of such a result.

Theorem 5.1.4 . Assume (Ŝ
(j)
t ) , j ∈ J is a family of processes for which there is

an equivalent martingale measure such that the density f of Q with respect to P is square

P-integrable. Assume also that 1
f

(which is the density of P with respect of Q) is square

Q-integrable.

Then there is a unique martingale measure for which

Φ(Q) = ||f ||L2(P) + || 1
f
||L2(Q)

is minimal.

Other results of these type can for example be found in Delbaen and Schachermayer (1996)

[DS4]. and in Schweizer [Sch]. But there is one main problem in all of these approaches: As

much as it they might make sense mathematically, there is no compelling economic reason

why the “right option price” should be given by minimizing a certain functional Φ.
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5.2 Stopping Times

Let (St)0≤t≤T be a stochastic process on a filtered space (Ω,F ,P, (Ft)0≤t≤T ) describing the

price of a stock during the time period [0, T ]. An American style option contingent to that

stock is a security which guarantees a payment of F (St) whenever the holder chooses to

exercise his or her option during the time period [0, T ]. Thus, studying American options

we are facing the additional problem that the holder has more freedom in exercising his

or her option. We first will have to study the possible or admissible rules the holder can

apply to determine when to exercise the option. In probability theory such admissible rules

are referred to as stopping times, they can be seen as strategies “for stopping or starting

certain processes”. Before we present the mathematical rigorous definition let us consider

some examples. Stopping times can be used for

1) determining when to sell or buy a stock.

2) when to quit playing a certain game.

3) when, playing Black Jack, to tell the dealer that one does not want more cards.

4) when to exercise an American option.

Examples. Consider the following strategies. Which of them should be called admissible?

1) Sell a stock once it got over 100 Euros.

2) At Black Jack: stop buying cards once one has at least 16 points.

3) At Black Jack: stop buying if the next card would get you over 21.

4) Play roulette until you made a gain of at least 1000 Euros or you lost all your money.

5) Sell a stock at the day its value is maximal over a given period [0, T ].

There is a crucial difference between the strategies (1), (2), and (4), on one hand and (3),

and (5) on the other hand: For (1), (2) and (4) the decision to stop at a certain time t
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depends only on events happening before or at time t. On the other hand in (3), and (5),

the decision of stopping at a certain time depends on future events: in (3) the decision to

stop depends on the value of the next card, and in (5) the decision to sell a stock at a time

t depends on whether or not all future values (Su)t<u≤T are smaller or equal to St.

Conclusion: A stopping time should be seen as a map τ : Ω→ [0,∞) or τ : Ω→ [0, T ] (if

the considered time period is finite) for which the event {τ = t}, or {τ ≤ t} only depends

on events happened at time t or before. Thus, the events {τ ≤ t}, {τ = t} must be Ft
measurable. This leads us to the following precise definition.

Definition. Given a filtered probability space (Ω,F ,P, (Ft)t∈I) where I is an index set like

I = [0,∞), I = [0, T ], or I is discrete like I = {0, t1, t2, . . . , tn} or I = {0, t1, t2, t3, . . .}.

A stopping time is then a map:

τ : Ω→ I,

or, if I is an unbounded indexset, τ can assume the value ∞

τ : Ω→ I ∪ {∞},

having the property that the set {ω ∈ Ω | τ ≤ t} ∈ Ft for all t ∈ I. A map τ : Ω → I,

respectively τ : Ω→ I ∪ {∞}, with countable range, say {τ(w) : w ∈ Ω} = {t0, t1, t2, . . .} is

a stopping time if and only if

{τ = ti} ∈ Fti for i = 1, 2, . . . .

It is often much easier, but enough for our purposes, to consider only stopping times with

countable ranges.
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Proposition 5.2.1 .

a) Constant random variables τ ≡ t are stopping times.

b) If τ, σ are stopping times then max(τ, σ) and min(τ, σ) are stopping times.

c) Suppose I = [0,∞) or I = N0. If τ is stopping time and t ∈ I, then τ + t is stopping

time.

But: τ − t not necessarily stopping time.

Proof of Proposition 5.2.1. We will only show (b) for max(τ, σ) and leave the rest as an

exercise. For t ∈ I note that

{max(τ, σ) ≤ t} = {τ ≤ t} ∪ {σ ≤ t} ∈ Ft.

�

The following Proposition exhibits some important examples of stopping times. They

can be formulated in financial terms as follows: Telling your broker to sell a stock at the

time it surpasses a certain value is an admissible strategy. We first need some technical

conditions on the filtration and the stochastic processes.

If the index set I is continuous, i.e. of the form I = [0, T ] or I = [0,∞) we will say that a

stochastic process (St)t∈I on the filtered space (Ω,F ,P, (Ft)t∈I) satisfies the usual conditions

if

1) F0 consists of all sets A for which P(A) = 0 or P(A) = 1. This means that an F0-

measurable random variable is almost surely a constant and conversely each random

variable which is almost surely a constant is F0-measurable.

2) For t,Ft =
⋂
u>t

Fu.
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3) The paths of (St) are right continuous having limits to the left, i.e. for ω ∈ Ω

lim
u↗t

Su(w) exists and lim
u↘t

Su(w) = St(w).

If I is discrete above assumptions (2) and (3) are meaningless, and in that case we mean

by the usual conditions only above condition (1).

Proposition 5.2.2 . Assume that for the stochastic process on (Ω,F ,P, (Ft)t∈I) the

usual conditions are satisfied. Let a ∈ R and define for ω ∈ Ω:

a) τ(ω) = inf{t ∈ I|St(ω) ≥ a}

b) σ(ω) = inf{t ∈ I|St(ω) > a}

(with inf(∅) = sup I or ∞ depending whether or not I is bounded)

Then τ and σ are stopping times.

Proof. We assume I = [0,∞). The other cases can be handled similarly.

For t ∈ I we deduce from the right continuity that

{τ ≤ t} =
⋃
u≤t

{ω ∈ Ω | Su(ω) ≥ a}

=
⋂
n∈N

⋃
u<t

u rational

{ω ∈ Ω | Su(ω) ≥ a− 1

n
} ∪ {ω ∈ Ω | St(ω) ≥ a}.

Note that the first union is uncountable. Thus although all the sets of the form

{ω ∈ Ω | Su(ω) ≥ a}, u ≤ t, lie in Ft we cannot yet deduce that the union of these

uncountable many sets is in Ft. But using the fact that the paths of St are right continuous

we can reduce it to a countable union of elements of Ft.

The proof of part (b) is left as an exercise. �
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Defintion. If (St)t∈I is an adapted process and τ a stopping time on (Ω,F ,P, (Ft)t∈I) we

call the process (St∧τ )t∈I with

St∧τ (w) :=

St(w) if t < τ(w)

Sτ(w)(w) if t ≥ τ(w)

the process (St) stopped by τ and Sτ : Ω → R, with Sτ (ω) = Sτ(ω)(ω) is called terminal

element .

As we observed before “events happening before a fixed time t” are elements of Ft. We

now want to define what it means for an event to happen before a stopping time τ .

Proposition 5.2.3 . Let τ : Ω→ I be a stopping time on (Ω,F ,P, (Ft)i∈I). Then the

set of all elements A of F which have the property that

A ∩ {τ ≤ t} ∈ Ft

form a σ-algebra, it is called the σ-algebra of events before τ and is denoted by Fτ .

Proof. We verify the properties of σ-algebras:

1) φ ∈ Fτ since φ ∩ {τ ≤ t} ∈ Ft for all t ∈ I.

2) If A ∈ Fτ , then

(Ω\A) ∩ {τ ≤ t} = Ω ∩ {τ ≤ t}\A ∩ {τ ≤ t} ∈ Ft

for all t ∈ I, then Ω\A ∈ Fτ .

3) If A1, A2, . . . ∈ Fτ , then⋃
i∈N

Ai ∩ {τ ≤ t} =
⋃
i∈N

(Ai ∩ {τ ≤ t})︸ ︷︷ ︸
∈Ft

∈ Ft

for all t ∈ I. Thus
⋃
i∈N

Ai ∈ Fτ . �
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Proposition 5.2.4 . Assume (St)t∈I is an adapted process and τ a stopping time on

(Ω,F ,P, (Ft)t∈I) satisfying the usual conditions (if I = [0,∞) or I = [0, T ]). Let τ be a

stopping time and assume τ <∞ a.s.

Then Sτ is Fτ measurable.

Proof. We assume I = [0,∞). In the case that I = [0, T ] the proof is the same, if

I = {t1, t2, . . .} the proof is simpler.

Given a ∈ R we have to show that {Sτ < a} ∈ Fτ . This means that for given t ∈ [0,∞)

we have to show that

{Sτ < a} ∩ {τ ≤ t} ∈ Ft.

For let n ∈ N Pn = (t
(n)
0 , t

(n)
1 , . . . t

(n)
n ) be a partition of [0, t] (0 = t

(n)
0 < t

(n)
1 < . . . < t

(n)
n = t)

for which limn→∞ ||Pn|| = 0. Using the fact that St is right continuous we note that

{Sτ < a} ∩ {τ ≤ t}

=
[
{τ = t} ∩ {St < a}

]
∪
⋂
n∈N

n⋃
i=1

[
{t(n)
i−1 < τ ≤ t

(n)
i } ∩

⋃
q∈[t

(n)
i−1,t

(n)
i )

q rational

{Sq < a and τ < q}
]
.

Thus we wrote the set {Sτ < a} ∩ {τ ≤ t} as countable unions and intersections of sets

in Ft, from which we deduce the claim. �

Proposition 5.2.5 .

Suppose σ and τ are stopping times on (Ω,F ,P, (Ft)t∈I).

a) If σ ≤ τ then Fσ ⊂ Fτ .

b) If A ∈ Fσ then A ∩ {σ ≤ τ} ∈ Fτ .
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Proof. a) Suppose that A ∈ Fσ, then

A ∩ {σ ≤ t} ∈ Ft all t ∈ I.

This implies for all t

A ∩ {τ ≤ t} = A ∩ {σ ≤ t}︸ ︷︷ ︸
∈Ft

∩{τ ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft.

b) Suppose that A ∈ Fσ, then for t ∈ I

(5.5) A ∩ {σ ≤ τ} ∩ {τ ≤ t} = (A ∩ {σ ≤ t}) ∩ {τ ≤ t} ∩ {min(σ, t) ≤ min(τ, t)}.

By Proposition 5.2.1 follows that min(σ, t) and min(τ, t) are also stopping times, and from

part (a) follows that Fmin(σ,t) ⊂ Fmin(τ,t) ⊂ Ft Therefore each of the three sets on the right

side of (5.5) lies in Ft. Since t ∈ I was arbitrary it follows, that A ∩ {σ ≤ τ} ∈ Fτ . �

We now come to our key result in this section. Roughly it says the following: If (St)t∈I

is a martingale, a submartingale or a supermartingale, i.e. for s < t

E(St|Fs) = Ss, respectively

E(St|Fs) ≥ Ss, respectively

E(St|Fs) ≤ Ss,

then the above inequalities are preserved if one replaces s and t by two bounded stopping

times σ and τ with σ ≤ τ .
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Theorem 5.2.6 (Optional Sampling Theorem).

Assume (St)t∈I is an adapted process on the filtered space (Ω,F ,P, (Ft)t∈I) and assume

the usual condition (at the beginning of the section) are satisfied. Let σ, τ be the stopping

times with σ ≤ τ and τ ≤ N for some N ∈ I if

a) (St)t∈I is a martingale, then

E(Sτ |Fσ) = Sσ a.s.

b) (St)t∈I is a submartingale, then

E(Sτ |Fσ) ≥ Sσ a.s.

c) (St)t∈I is a supermartingale, then

E(Sτ |Fσ) ≤ Sσ a.s.

Proof. In the case that I = [0,∞) or I = [0, T ) the proof would need some technical

tools going beyond the scope of this text. Therefore we will prove the statement only in the

discrete case and will assume without loss of generality that I = N0. Nevertheless the proof

can easily be adapted to the continuous case if one assumes that the stopping times σ and

τ achieve only finitely many values.

We only need to show b) because if (St) is a supermartingale then (−St) is a submartingale

and if (St) is a martingale it is both a sub- and a super-martingale.

Let σ ≤ τ ≤ N be two stopping times. We will first define “intermediate stopping times”

σ0 = σ

σ1 = min(τ, σ + 1)

...

σN = min(τ, σ +N).
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Since τ ≤ N it follows that σN = τ . Secondly, it follows that for any i = 0, 1, 2, . . . , N − 1

we have σi ≤ σi+1 and σi+1 and σi differ by at most 1.

It is enough to show that for i = 0, 1, . . . , N − 1

E(Sσi+1
|Fσi) ≥ Sσi a.s.

which means by the definition of conditional expectations that for any given A ∈ Fσi we

have to show that

E(1ASσi+1
) ≥ E(1ASσi).

Indeed

E(1ASσi+1
) =

N∑
j=0

E(1A∩{σi=j}Sσi+1
)

=
N∑
j=0

E(1A∩{σi=j}∩{σi+1=j}Sj) + E(1A∩{σi=j}∩{σi+1=j+1}Sj+1)

[σi ≤ σi+1 ≤ σi + 1]

=
N∑
j=0

E(1A∩{σi=j}∩{σi+1=j}Sj) + E(1A∩{σi=j}∩{σi+1>j}Sj+1)

[{σi+1 > j} = Ω\{σi+1 ≤ j} ∈ Fj]

≥
N∑
j=0

E(1A∩{σi=j}∩{σi+1=j}Sj) + E(1A∩{σi=j}∩{σi+1>j}Sj)

[Since E(Sj+1|Fj) ≥ Sj a.s., it follows for B ∈ Fj, E(1BSj+1) ≥ E(1BSj)]

=
N∑
j=0

E(1A∩{σi=j}Sj)

= E(1ASσi)

�

The following example shows that the boundedness condition “τ ≤ N” in Theorem is

necessary. It formulates the well known “doubling strategy” in roulette for example: Bet on

red, doubling each time the stake, until red appears.
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Example. Assume X1, X2, X3, . . . are independent random variables with P(Xi = 1) = p >

0, and P(Xi = −1) = (1− p). Define

Sn =
n∑
i=1

2i−1Xi

and τ(w) = min{n ∈ N, Xn = 1}. Note τ <∞ almost surely and note that for w ∈ Ω

Sτ(w)(w) =

τ(w)∑
i=1

2i−1Xi(w)

= 2τ(w)−1−
Pτ(w)−1
i=1 2i−1

= 2τ(w)−1 − (1 + 2 + 4 + · · ·+ 2τ(w)−2)

= 1 [geometrical sequence].

Thus E(Sτ ) = 1. On the other hand, (Sn) is a martingale if p = 1
2

and a supermartingale if

p < 1
2
. Moreover, if p ≤ 1

2

E(Sn) =
n∑
i=1

2i−1(p− (1− p)) ≤ 0. �
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5.3 Valuation of American Style Options

We now turn to the problem of finding arbitrage free prices for American style options.

Recall that an American style option contingent to a security S with pay-off function F and

exercise period [0, T ] pays F (St) dollars, if the holder of the option decides to exercise the

option at time t ∈ [0, T ] and the price of the underlying security is St. As discussed in the

previous section the holder is allowed to use any strategy defined by a stopping time.

We will, at least for the moment, only consider finitely many trading times 0, 1, 2, . . . , N ,

with N ∈ N and American style options which are exercisable only at these times. We also

assume for the moment that all prices are given in zero bonds paying one Euro at time N .

This forces us to let the payoff function F also depends on the exercise date n (chosen by the

holder). Indeed, let g(Sn) be the payoff in Euros if the holder exercises at time n. Then the

payoff in terms of zero bonds at this time would be Fn = er(N−n)g(Sn), where r > 0 denotes

the interest paid between the times i and i + 1, i = 0, 1, . . . N − 1. Thus, although g(Sn) is

only a function of Sn a dependence on the exercise date will be unavoidable if we translate

this amount into zero bonds .

Therefore we will work within the following frame.

We think of an American option as a sequence of N + 1 functions on Ω, and we denote

them as F0, F1, . . . , FN+1. The vector function (F0, F1, . . . , FN) will be denoted by F . For

ω ∈ Ω the number Fn(ω) represents the payoff if the holder decides to exercise at time n

assuming ω happens. Because of some technical reasons we will assume that the holder can

exercise the option at time 0.

Fi, i = 0, 1, . . . N , is defined on some filtered probability space (Ω,F ,P, (Fi)i=0,1,..N). F0

consists of all sets A ∈ F with P(A) = 0 or P(A) = 1, and Fn represents as usual the set

of all events for which it is known by the time n whether or not they happened. Since by

time n it should be determined how much the holder of an option receives if he decides to

exercise the option we will require that Fn is Fn-measurable, for n = 0, 1, . . . N .

An American style option F = (F0, F1, . . . , Fn) is called contingent to a price process

(Si)i=0,1,...N if Fn is of the form Fn(ω) = fn(Ŝn(ω)), where fn : R 7→ R is measurable. We
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could write in this case Fn as a function of Sn instead of a function of Ŝn. But we want

to keep all prices in a given formula in the same currency. We will also continue with the

convention to denote payoff functions in zero bonds by the letter F and payoff functions in

Euros by the letter G or g.

Example. An American call.

The payoff function of a call is g(S) = (S − E)+. If (Sn)n=0,..N is the price process for

the underlying asset it follows that

(5.6) Fn = er(N−n)(Sn − E)+ = (er(N−n)Sn − er(N−n)E)+ = (Ŝn − Ên)+,

with Ên = er(N−n)E.

As in Section 5.1 we are given several processes describing the prices of the underlying

assets. We will fix an equivalent probablity Q which turn the discounted prices of these

assets into martingales. As discussed in Section 5.1 the value of a general claim paying f(ω)

is given by

(5.7) Ve(f, t) = EQ(f | Ft)

where in this section t runs only over the discrete values 0, 1, . . . N . We will use the subscript

“e” for European style options.

We will prove in this section that once an equivalent martingale probability is chosen and

the value of each European style option determined by the formula (5.7), the arbitrage free

price of each American style option is also determined.

If F is the sequence of pay-off functions we denote by Va(F, n), n ∈ {0, 1, . . . , N}, the

value of the American style option at time n. Here we assume that the holder is still able to

exercise at time n. Therefore Va(F, n) is at least the intrinsic value of the option, i.e.

(Va1) Va(F, n) ≥ Fn

It is clear that Va(F,N) = FN , and the following principle is a key observation and will

enable us to trace back the value at the American style option until the time 0.



136 CHAPTER 5. MARTINGALES, STOPPING TIMES AND AMERICAN OPTIONS

For n = 0, 1, . . . , N − 1

(Va2) Va(F, n)=max
(
Fn, Ve(Va(F, n+ 1), n)

)
=max

(
(Fn,EQ(Va(F, n+ 1)|Fn)

)
Note that Ve(Va(F, n + 1), n) is the value, at time n, of a claim which pays the amount

Va(F, n+ 1) in zerobonds.

Remark. The principle (Va2) follows from the following arbitrage argument.

Assume first that Va(F, n) < max(Fn, Ve(Va(F, n + 1), n)). At time n we could proceed

as follows: Buy an American style option F and sell short an option paying Va(F, n+ 1) at

time n + 1. From the inequality (Va1) we deduce that Va(F, n) < Ve(Va(F, n + 1), n) and

therefore the transactions at time n generates an income of Ve(Va(F, n + 1), n) − Va(F, n).

At time n + 1, we sell the American option receiving the amount of Va(F, n + 1) which can

be used to close the short position.

If Va(F, n) > max(Fn, Ve(Va(F, n + 1), n)) we could sell at time n an American style

option F and receive the amount Va(F, n).

Then we are faced with two possibilities:

Either the buyer of that option exercises it right at time n (which would not be very

smart given the price difference) and we would make a profit of Va(F, n) − Fn > 0. Or

the buyer does not exercise at time n. In that case we would buy at time n an option

which pays at time n + 1 the amount of Va(F, n + 1) and at time n + 1 we could close the

short position using the amount Va(F, n+ 1). Nevertheless, we end up with a sure profit of

Va(F, n)− Ve(Va(F, n+ 1), n) > 0.

�

Using (Va2) we are able to compute Va(F, n) similar to the computation of option prices

within the log binomial model by tracing back the price starting with the final time N back

to the time 0.

Va(F,N) = FN , and

Va(F,N − 1) = max
(
FN−1, Ve(Va(F,N), N − 1)

)
= max

(
FN−1),EQ(FN |FN−1)

)
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and, if Va(F, n), n ≥ 1, is already computed, then

Va(F, n− 1) = max
(
Fn−1, Ve(Va(F, n), n− 1)

)
(5.8)

= max

(
Fn−1,EQ(Va(F, n)|Fn−1).

)
As mentioned at the beginning of this section the holder of an American option can

choose a strategy, in mathematical terms a stopping time, to determine the time at which

the option should be exercised. What is the best exercise strategy?

To answer this question consider for a fixed stopping time τ : Ω → {0, 1, . . . , N} the

claim which pays Fτ . Thus Fτ (ω) = Fτ(ω)(ω), which is the process (Fn) stopped at τ (see

Section 5.2). For example a European style option with fixed exercise date N can be seen as

an option with τ ≡ N . Using our result of Section 5.1 we can compute its value as follows

V (Fτ , 0) = EQ(Fτ ) =
N∑
n=0

EQ(1{τ=n}Fn).

Theorem 5.3.1 . For n ∈ {0, 1, . . . , N} it follows that

(5.9) Va(F, n) = sup
n≤τ≤N

τ stopping time

EQ(Fτ |Fn).

Furthermore the “sup” in Equation (5.9) is attained for the following stopping time τn:

τn = min{` ≥ n | F` ≥ Ve(Va(F, `+ 1), `)}.

where for ` = N , we put Ve(Va(F,N + 1), N) = FN .

In particular,

Va(F, 0) = sup
0≤τ≤N

τ stopping time

EQ(Fτ )

and the optimal stopping time is in this case

τ0 = min{` ≥ 0 | F`(Ŝ`) ≥ Ve(Va(F, `+ 1), `)}.
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Remark. Note that the optimal stopping time can be described as follows: “Exercise the

option once its value equals its intrinsic value”.

Proof of Theorem 5.3.1. By reversed induction we prove for each n = N,N − 1, . . . , 0

the following 3 claims

claim 1: τn is a stopping time.

claim 2: Va(F, n) ≥ sup
n≤τ≤N

EQ(Fτ | Fn).

claim 3: Va(F, n) ≤ EQ(Fτn|Fn).

For n = N all three claims are trivial: τn ≡ N , and Va(F,N) = FN = EQ(FN | FN).

Assume now claim 1, claim 2 and claim 3 are true for n+ 1. We need to verify them for n.

First note that for ω ∈ Ω

(5.10) τn(ω) =

n if Fn ≥ Ve(Va(F, n+ 1), n)

τn+1(ω) if Fn < Ve(Va(F, n+ 1), n).

Thus {τn = n} = {Fn ≥ Ve(Va(F, n+ 1), n)} ∈ Fn and for ` > n we observe that

{τn = `} = {Fn < Ve(Va(F, n+ 1), n)}︸ ︷︷ ︸
∈Fn

∩{τn+1 = `}︸ ︷︷ ︸
∈F`

∈ F`.

In particular, claim 1 follows from the induction hypothesis.

Claim 2 could be explained intuitively: an American style option should be worth at least

as much as an option with the same pay-off function and fixed exercise strategy. But let us

give a rigorous argument.

For any stopping time n ≤ τ ≤ N it follows that

EQ(Fτ | Fn) = EQ(1{τ=n}Fn + 1{τ>n}Fτ | Fn)

= 1{τ=n}Fn + 1{τ>n}EQ(Fτ | Fn)

[1{τ=n}, 1{τ>n} and Fn are Fn-measurable]

≤ max
(
Fn,EQ(Fτ∨(n+1) | Fn)

)
.
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Using the induction hypothesis and (Va2) we derive that

EQ(Fτ∨(n+1) | Fn) = EQ(EQ(Fτ∨(n+1) | Fn+1) | Fn)

≤ EQ(Va(F, n+ 1) | Fn) [Inductionhypothesis]

= Ve(Va(F, n+ 1), n)

≤ Va(F, n). [By (Va2)]

¿From both inequalities we now deduce claim 2 for n.

We finally have to show claim 3.

Va(F, n) = max(Fn, Ve(Va(F, n+ 1), n)) [by (Va2)]

= max(Fn,EQ(EQ(Fτn+1 | Fn+1) | Fn)) [Induction hypothesis]

=

Fn if τn = n

EQ(Fτn+1 | Fn) if τn > n

= EQ(1{τn=n}Fτn + 1{τn>n}Fτn | Fn)

[if τn > n then τn = τn+1]

= EQ(Fτn | Fn).

�

The price process of a European style option Ve(F, n) = EQ(FN | Fn) is a martingale.

The next result describes the process Va(F, n) as a supermartingale.



140 CHAPTER 5. MARTINGALES, STOPPING TIMES AND AMERICAN OPTIONS

Theorem 5.3.2 . The process Va(F, n) is a supermartingale. Furthermore it is the

smallest supermartingale with the property that Va(F, n) ≥ Fn. This means that for any

supermartingale Xn with the property that

Xn ≥ Fn a.s.

it follows that

Xn ≥ Va(F, n) a.s.

Proof. By (Va2) it follows for n = 0, 1, . . . , N − 1 that

EQ(Va(F, n+ 1) | Fn) = Ve(Va(F, n+ 1), n) ≤ max(Fn, Ve(Va(F, n+ 1), n)) = Va(F, n),

which proves that (Va(F, n))n=0,1,...,N is a supermartingale.

If Xn ≥ Fn is a supermartingale we will prove by reversed induction that

Xn ≥ Va(F, n) a.s. for all n = N, . . . , 0. For n = N , XN ≥ FN = Va(F,N). Assume we

showed the claim for n+ 1, then it follows that

Xn ≥ EQ(Xn+1 | Fn)

[Xn is a supermartingale]

≥ EQ(Va(F, n+ 1) | Fn)

[Using the inductionhypothesis]

= Ve(Va(F, n+ 1), n)

since also Xn ≥ Fn we deduce from (Va2) that

Xn ≥ max(Fn, Ve(Va(F, n+ 1), n))) = Va(F, n).

�

Example.

We want to consider the log-binomial model with length N , a model for which we know

the equivalent martingale probability Q (which is unique). We assume that Fn is contingent
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to a process (Sn)n=0,...N which is log-binomial distributed. Therefore we write Fn = fn(Ŝn).

If U and D are the factors by which Sn goes up or down (with D < R = er < U), then

Ŝn goes either up by the factor e−rU or down by the factor e−rD (since the price of the

zerobond in terms of Euros increases by the factor er between the times n and n+ 1

In terms of zero bonds we deduce

Q(Ŝn+1 = e−rUŜn | Fn) =
er −D
U −D

Q(Ŝn+1 = e−rDŜn | Fn) =
U − er

U −D
.

We let Va(F, n)(Ŝn) be the value of an American style option. The discounted stock price

Ŝn can assume the values U iDn−iŜ0, i = 0, 1, . . . , n. Strictly speaking, Va(F, n) depends on

ω ∈ Ω, but it can be seen easily that Va(F, n) depends only on the value of Ŝn(ω). Thus we

can write Va(F, n)(Ŝn) for the value of the option at time n if the stockprice is Ŝn.

From (Va2) we deduce the following recursive formula

Va(F, n)(Ŝn) = max(fn(Ŝn),EQ(Va(F, n+ 1) | Fn)(Ŝn))

= max

(
fn(Ŝn), Va(F, n+ 1)(Ŝne

−rU)
er −D
U −D

+ Va(F, n+ 1)(Ŝne
−rD)

U − er

U −D

)
.

How should somebody hedge his/her portfolio after selling an American style option?

For n = 0, 1, . . . , N − 1 define

∆n(Ŝn) =
Va(F, n+ 1)(Ŝne

−rU)− Va(F, n+ 1)(ŜnD)

Ŝne−rU − Ŝne−rD

Cn(Ŝn) = Va(F, n)(Ŝn)− EQ(Va(F, n+ 1) | Fn)(Ŝn).

¿From (Va2) follows that Cn ≥ 0 and Cn > 0 only if Va(F, n) = Fn > Ve(Va(F, n + 1), n).

Now define the following adapted process (Xn) in bond prices :

X0 = Va(F, 0)

(which is the amount the seller receives at time 0) and recursively

Xn+1 = ∆n(Ŝn) · Ŝn+1 +Xn − Cn −∆n(Ŝn) · Ŝn.
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This is the value of the portfolio at time n+1 if at time n the investor bought ∆n(Ŝn) shares

of the stock, took Cn ≥ 0 out of the portfolio and invested the rest in bonds.

We claim that

Xn = Va(F, n),

i.e. the investor has at all times the short position of one unit of an American style option

covered.

We prove the claim by induction for each n = 0, 1, . . . , N . For n = 0 this follows from

the choice of X0.

Assume the claim is correct for some time n.

If at time n + 1, Ŝn+1 = e−rUŜn we deduce (we suppress the dependence on Ŝn of ∆n,

Xn and Cn )

Xn+1 = ∆n(Ŝne
−rU − Ŝn) +Xn − Cn

=
Va(F, n+ 1)(Ŝne

−rU)− Va(F, n+ 1)(Ŝne
−rD)

e−rU − e−rD
(e−rU − 1) + Va(F, n)(Ŝn)− Cn

= qD[Va(F, n+ 1)(Ŝne
−rU)− Va(F, n+ 1)(Ŝne

−rD)] + Va(F, n)(Ŝn)− Cn[
qD = Q(Ŝn+1 = e−rDŜn | Fn) =

U − 1

U −D

]
= qD[Va(F, n+ 1)(Ŝne

−rU)− Va(F, n+ 1)(Ŝne
−rD)]

+ qUVa(F, n+ 1)(Ŝne
−rU) + qDVa(F, n+ 1)(Ŝne

−rD)

[Recall that by definition of Cn that EQ(Va(F, n+ 1) | Fn)(Ŝn) = Va(F, n)(Ŝn)− Cn]

= Va(F, n+ 1)(e−rUŜn)

[qU + qD = 1].

If at time n+ 1, Ŝn+1 = e−rDŜn the claim follows from a similar computation.

Remark. Looking at the last hedging argument one might get the impression that the seller

of the American option has an arbitrage opportunity since he/she can withdraw the amount

Cn, and still cover the short position. But note that Cn only becomes strictly positive if

Va(F, n) > EQ(Va(F, n + 1) | Fn) = Ve(Va(F, n + 1), n) and thus by (Va2) we deduce that
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Va(F, n) = Fn(Ŝn). If the buyer chooses to pursue the optimal strategy as determined in

Theorem 5.3.1 he/she will exercise at time n and stop the process. If the buyer chooses not

to persue the optimal strategy the seller will actually make a profit.

Let us rewrite the (Va1) and (Va2) in terms of fixed currencies and consider an American

style option contingent to an asset S. It pays g(Sn) Euros if the holder chooses to exercise at

time n. The corresponding payoff functions in zero bonds are therefore Fn = er(N−n)g(Sn),

n = 0, 1, . . . N . Denoting the value in Euros of the considered option at time n by Wa(g, n)

we deduce that Wa(g, n) = e−(N−n)Va(F, n) and then observe that the conditions (Va1) and

(Va2) translate into

(Wa1) Wa(g, n) = e−r(N−n)Va(F, n) ≥ e−r(N−n)Fn = g(Sn)

and

Wa(g, n) = e−r(N−n)Va(F, n)(Wa2)

= e−r(N−n) max
(
Fn,EQ(Va(F, n+ 1)|Fn)

)
= max

(
g(Sn), e−rEQ(Wa(F, n+ 1)|Fn)

)
.

In the next section we will derive that for a wide class of payoff functions the value of a

European option equals to the value of the corresponding American style option. I.e. there is

no benefit for the holder in being able to choose the exercise date. In the following example

we will verify this claim for a call in the log-binomial model.

Example. In the log-binomial model is the value of an American call equal to the value

of the corresponding European call.

Let g(S) = (S −E)+ and Fn = er(N−n)(Sn −E)+ = (Ŝn − Ên)+, with Ê = er(N−n)E, for

n = 0, 1, . . . N . We assume that Sn is log-binomial distributed and denote the ups by U and

the downs by D.

By reversed induction we will show for every n = N,N − 1, . . . , n that Fn ≤ EQ(FN |Fn).

For n = N the claim is clear, and assuming the claim being true for n+ 1 we first not that

the function g is convex, meaning that g(αx+ βy) ≤ αg(x) + βg(y), whenever x, y ∈ R and

α, β ≥ 0 with α + β = 1
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Therefore we deduce that

EQ(FN |Fn) = EQ
(
EQ(FN |Fn+1)|Fn

)
≥ EQ(Fn+1|Fn) [induction hypothesis]

= EQ(g(Sn+1)er(N−n−1)|Fn)

= er(N−n−1)
(
qDg(DSn) + qUg(USn)

)
≥ er(N−n−1)g

(
qDDSn + qUUSn

)
[Convexity]

= er(N−n−1)g(erSn) = er(N−n)(Sn − e−rE)+ ≥ er(N−n)(Sn − E)+ = Fn.

Secondly we prove, again by reversed induction, that Va(F, n) = Ve(FN). For n = N the

claim is trivial and assuming we have shown the claim for n+ 1 we deduce that

Va(F, n) = max
(
Fn, Ve(Va(F, n+ 1), n)

)
= max

(
Fn,EQ(FN |Fn)

)
[induction hypothesis]

= EQ(FN |Fn) = Ve(FN , n).

�
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5.4 For which Payoff Functions do American and Eu-

ropean Options have the same Values?

In Section 5.3 we derived the value of American style options assuming only finitely many

trading times. Letting the number of trading times increase and the distance between them

decrease it is reasonable to assume that the formula (5.9) in Theorem5.3.1 can be generalized

to the continuous time setting. Let Q be an equivalent probability turning all discounted

price processes of the underlying assets into martingales, and assume that (Ft)0≤t≤T is a

family of payoff functions of an American style option. As before we we assume that (Ft)

is an adapted process on the filtered probability space (Ω,F ,P, (Ft)0≤t≤T ). We think of Ft

being the payoff in zerobonds if the holder decides to exercise at time t.

Assuming that all European style options are priced using the equivalent probability Q

in the pricing formula of Theorem 5.1.3, we deduce the price of an American option is given

by

(5.11) Va(F, t) = sup
t≤τ≤T

τ stopping time

EQ(Fτ | Ft).

We omitt a proof of Equation (5.11) for the continuous time case, and refere to ........ instead.

Let us first convert Equation (5.11) into our fixed currency. We consider an American

style option paying g(St) Euros if the holder decides to exercise at time t. Its pay off functions

in terms of zerobonds are therefore Ft = er(T−t)g(St) = er(T−t)g(e−r(T−t)Ŝt), 0 ≤ t ≤ T . The

value Wa(g, t) of the option in terms of Euros is then

Wa(g, t) = e−r(T−t)Va(F, t)(5.12)

= e−r(T−t) sup
t≤τ≤T

τ stopping time

EQ(Fτ ) | Ft)

= sup
t≤τ≤T

τ stopping time

EQ(e−r(τ−t)g(Sτ )|Ft).

The following Theorem states a general situation for which the value of an American

style option equals to its European version.



146 CHAPTER 5. MARTINGALES, STOPPING TIMES AND AMERICAN OPTIONS

Theorem 5.4.1 . If g is a convex function with g(0) = 0 then

Wa(g, t) = Ve(g, t), whenever t ∈ [0, T ].

Theorem 5.4.1 will be a consequence of the Optional Sampling Theorem 5.2.6 and the in-

equality of Jensen (see Theorem B.3.7 in Appendix B.3).

Proof of Theorem 5.4.1. According to 5.12 we have to show that for two stopping times

σ and τ so that t ≤ σ ≤ τ ≤ T it follows that

EQ(e−(τ−t)rg(Sτ )|Ft) ≥ EQ(e−r(σ−t)g(Sσ)|Ft).

Then it would follow that the supremum in 5.12 is achieved for the constant stopping time

τ ≡ T . For that, note that

EQ(e−(τ−t)rg(Sτ )|Ft) = EQ
(
EQ(e−r(τ−t)g(Sτ )|Fσ)|Ft

)
[Ft ⊂ Fσ]

= EQ
(
e−(σ−t)rEQ(e−(τ−σ)rg(Sτ ) | Fσ) | Ft

)
[Write e−(τ−t)r = e−(σ−t)re−(τ−σ)r]

≥ EQ(e−(σ−t)rEQ(g(Sτe
−(τ−σ)r) | Fσ) | Ft)

[Note that a = e−(τ−σ)r ≤ 1 and ag(x) = ag(x) + (1− a)g(0) ≥ g(ax)]

= EQ(e−(σ−t)rEQ(g(Ŝτe
−r(T−σ)) | Fσ) | Ft)

≥ EQ

(
(e−(σ−t)rg

(
EQ(Ŝτe

−r(T−σ)) | Fσ)
)
|Ft
)

[Inequality of Jensen]

≥ EQ(e−(σ−t)rg(Ŝσe
−r(T−σ))|Ft)

[Optional Sampling Theorem, Ŝt is a Q-martingale]

= EQ(e−(σ−t)rg(Sσ)|Ft)

which verifies the claim. �



5.4. AMERICAN AND EUROPEAN OPTIONS, A COMPARISON 147

�

Corollary 5.4.2 . An American call has the same value as the corresponding (i.e. same

strike price and same exercise date) European call, assuming the underlying asset does not

pay dividends.

In the following example we consider the case that the underlying asset pays dividends

at time tD, 0 < tD < T .

Example. We compare an American to an European call with strike price K and

exercise date T assuming the underlying asset follows the Black Scholes model and pays at

time tD ∈ (0, T ) a dividend of the amount DSt−D
. Following the arguments in Section 3.4B

and using the formula for European calls in Proposition 3.3.1 of Section 3.3 we deduce for

tD < t ≤ T

Ve((ST −K)+, t) = StN(d)−Ke−r(T−t)N(d− ν
√
T − t),

where N(d) = 1√
2π

d∫
−∞

e−x
2/2dx, d = [log(St/K) +

(
r + 1

2
ν2
)
(T − t)]/ν

√
T − t, and where ν

is the volatility.

Since no dividend is paid out during (tD, T ] it follows from Theorem 5.4.1 that Va((ST −

K)+, t) = Ve((ST −K)+, t). We observed in Section 3.4B, Equation (3.25), that right before

time tD the value of an European call is

Ve

(
(St−D

−K)+, t−D

)
= Ve

(
(St−D

(1−D)−K)+, t+D

)
= St−D

(1−D)N(d∗)−Ke−r(T−tD)N(d∗ − ν
√
T − tD),

with

d∗ =
log(St−D

(1−D)/K) +
(
r + 1

2
ν2
)
(T − tD)

ν
√
T − tD

.
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Now consider the following situation: the call is very heavy “in the money”, meaning that

St−D
� K and thus N(d) ≈ N(d− ν

√
T − tD) ≈ 1. In this case

Ve

(
(St−D

(1−D)−K)+, t−D

)
≈ St−D

(1−D)−Ke−(T−tD)r

= St−D
−K + [(1− e−(T−tD)r)K −DSt−D ].

If secondly (1−e−(T−tD))K < DSt−D
, it follows that Ve((St−D

−K)+, t−D) is less than its intrinsic

value (St−D
−K)+, thus the value of the corresponding American style option must be higher.



Chapter 6

Path Dependent Options

6.1 Introduction of Path Dependent Options

In Section 5.1 we developed a theory to price a general option paying f(ω) at time t ∈ [0, T ],

where f : Ω → R was an Ft-measurable map. According to Equation (5.3) in Section 5.1

the value of such an option at time 0 ≤ s ≤ t is

W (g, t, s) = e−r(t−s)EQ(g|Fs),

where Q is a probability measure equivalent to P, for which the underlying assets are mar-

tingales if priced in zero-bonds. If we assume the log-binomial model (in the discrete time

case) or the Black Scholes model (in the continuous time case) this probability Q is unique,

and thus, prices of options are uniquely determined in this case. Unfortunately, this does

not mean that we have already a way to compute these prices. In this chapter we want to

find numerically computable formulae or algorithms for option prices. By this we mean for

example an integral (the lower the dimension the better), similar to the formula we obtained

for European style options within the Black Scholes formula (compare Section 3.2), or at

least an algorithm which can be implemented on a computer, like the procedure to find

option prices in the log-binomial model (compare Section 1.3), or the procedure of pricing

American style option based on the key equality (Va2) which leads to an iterative formula

149



150 CHAPTER 6. PATH DEPENDENT OPTIONS

if the time is discrete and if we assume expected values with respect to Q are computable.

The options we are interested in this part, are so called path dependent options. For these

options the payoff does not only depend on the value of the underlying asset at a certain time

t (either to be fixed as in the European style or choosable by the holder as in the American

style option), but its payoff also depends on “how the price behaved during the whole time

period”. Let us give the formal definition.

We will assume that the process describing the value of the underlying asset is continuous.

This is true within the Black Scholes model (which will be assumed in this part most of the

times) if the asset does not pay out dividends.

Definition. (Path dependent options)

Let C[0, T ] be the vectorspace of all continuous functions

ϕ : [0, T ]→ R,

and let F be a function on C[0, T ]

F : C[0, T ]→ R.

Now an option with payoff F contingent to an asset whose price is given by the stochastic

process (St)0≤t≤T is a security which pays F (ϕ) at time T if the path of St was ϕ, i.e. if an

ω occured for which St(ω) = ϕ(t), for all t ∈ [0, T ].

We will denote such a derivative by F (S(·)).

We can think of S(·) being an “infinite dimensional random variable”, which assigns to

each ω ∈ Ω an element in C[0, T ], namely the path [0, T ] 3 t 7→ St(ω). We will have

to discuss in Section 6.2 some of the technical points involving distributions on infinite

dimensional spaces like C[0, T ] in more detail. Let us first enumerate some important classes

of path dependent options.

Options depending on finitely many predetermined times

These are options of the form

F (S(·)) = F (St1 , St2 , . . . , Stn),
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with 0 ≤ t1 < t2 < . . . < tn = T .

The following options can be seen as elements of that class:

a) Options on options: at some predetermined time 0 < t1 < T the holder can decide

whether or not to purchase an option with exercise date T .

b) The chooser option: at some predetermined time 0 < t1 < T the holder can decide to

either buy a put or a call with given strike price K and exercise date T .

Barrier style options

The payoff of these options depends on the maximal value of the asset price over a given

time interval [0, T ], i.e.

F (S(·)) = g( max
0≤t≤T

St),

where g is a functions on R.

Asian style options

The payoff of these options depends on the average value of the asset price or a function

or the average value of a function of that price i.e.

F (S(·)) = G(
1

T

∫ T

0

Stdt), or more generallyF (S(·)) = G(
1

T

∫ T

0

g(St)dt),

Options depending on only finitely many predetermined times can be treated within the

usual Black Scholes theory developed in Chapter 3. The idea is the following: We first

compute the value of the option in the last time interval [tn−1, T ]. Since in this time interval

the values St1 , St2 , . . . , Stn−1 are realized we can treat them as constants, pricing of the option

F is then the same as pricing a European style option paying f(ST ) = F (St1 , . . . , Stn−1
, ST )

at time T . Once we found the price of the option at time tn−1 we use this value as the

payoff function for a new option and will be able to price our option within the time period

[tn−2, tn−1]. We can continue this way until we arrive at 0. In order to see which kind of

formulae we get let us compute the option value if the payoff depends on two times.
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Proposition 6.1.1 . We assume that the asset price satisfies the Black Scholes model

with constant drift µ and constant volatility ν. Let 0 < t1 < t2 = T and consider an option

paying F (St1 , ST ) at time T .

Then the value Vt of this option at time t

a) for t ∈ [t1, T ] is:

e−r(T−t)√
2πν2(T − t)

∞∫
−∞

F (St1 , Ste
r(T−t)e−

ν2

2
(T−t) · ez)e−

z2

2ν2(T−t)dz

b) for t ∈ [0, t1] is:

e−r(T−t)

2πν2
√
t1 − t

√
T − t1

∫ ∞
−∞

∫ ∞
−∞

F (Ste
(r− ν

2

2
)(t1−t)ex, Ste

(r− ν
2

2
)(T−t)ez+x)

· e−
z2

2ν2(T−t1)
− x2

2ν2(t1−t)dzdx.

Proof. We first compute the value of the option for t1 ≤ t ≤ T . At that time St1 is

realized and will be treated as a constant. We apply Formula (3.20) of Section 3.2 to the

payoff function G(ST ) = F (St1 , ST ) and derive that for t1 ≤ t ≤ T

Vt = e−r(T−t)E
(
F (St1 , Ste

r(T−t)e−
ν2

2
(T−t)+ν(BT−Bt))

)
=

e−r(T−t)√
2πν2(T − t)

∞∫
−∞

F (St1 , Ste
r(T−t)e−

ν2

2
(T−t) · ez)e−

z2

2ν2(T−t)dz

in particular for t = t1 we get

(6.1) Vt1 = F̃ (St1) =
e−r(T−t1)√

2πν2(T − t1)

∞∫
−∞

F (St1 , St1e
r(T−t1)e−

ν2

2
(T−t1) · ez)e−

z2

2ν2(T−t1)dz.

Now we apply for 0 ≤ t ≤ t1 the Black Scholes formula again, but this time for the payoff

F̃ (St1) and exercise date being t1 and we derive that
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Vt =
e−r(t1−t)√

2πν2(t1 − t)

∞∫
−∞

F̃ (Ste
r(t1−t)e−

ν2

2
(t1−t)ex)e

− x2

2ν2(t1−t)dx.

Replacing now in above integral the term

F̃ (Ste
r(t1−t)e−

ν2

2
(t1−t)ex)

we obtain

e−r(T−t1)√
2πν2(T − t1)

∞∫
−∞

F (Ste
r(t1−t)e−

ν2

2
(t1−t)ex, Ste

r(t1−t)e−
ν2

2
(t1−t)er(T−t1)e−

ν2

2
(T−t1)·ex+z)e

− z2

2ν2(T−t1)dz

wich is the claimed formula (b). �

Remark: The formula in Proposition 6.1.1 might look unpleasant but it is not hard to

implement it numerically. It also shows that the Black Scholes theory as developed in

Chapter 3 provides a complete answer to price options depending only on finitely many

predetermined trading times.

For options depending on infinitely many trading times, we might consider the following

approach which, at least theoretically, leads to an approximative pricing formula.

We partition the time interval in sufficiently many intervals [0, t1], [t1, t2],...[tn−1, T ] and

approximate the payoff function F (S(·)) by a sequence of payoff functions Fn(St1 , . . . Stn).

Under appropriate assumptions (which are satisfied by the functions F we usually considered)

the value of the option Fn(St1 , . . . Stn) (which is computable as a multi dimensional integral)

will converge to the value of the option F (S(·)).

But there is a numerical problem: as the formula in Proposition 6.1.1 indicates, the

value, at time 0, of an option with pay off F (St1 , . . . Stn) will be an n-dimensional integral.

Now let us consider an option having an exercise period of three month (about 80 working

days). It seems reasonable that we will need to partition this period into intervals not bigger

than a day. Thus we need at least n = 80, which means that we have to compute an 80-

dimensional integral. If we needed, say, 100 evaluations of a function in order to get a precise
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enough approximation for one dimensional integrals we would need about 10080 = 10160

evaluations for our 80-dimensional integral in order to get the same precision. With some

more sophisticated methods (for example Monte Carlo methods) one might be able to reduce

this number considerably. But nevertheless we will have to compute an integral for which

the time of computation could be larger than the whole exercise period. Thus, this approach

is not very suitable if we want to use it for “on time hedging”.

In order to compute the value of path dependent options we will take an other, more

direct approach.

First, we will have to compute the equivalent martingale measure Q within the Black

Scholes model. As we will see this mainly consists in finding the distribution of the process

Bt, which, under P, is a Brownian motion. We will find out, that under the probability Q,

Bt is a “shifted Brownian motion”. Secondly, we will have to compute the (one dimensional)

distribution of the random variable ω 7→ F (S(·)(ω)) Once we know its distribution (which is

a probability on R) and its density, say ρ, the value of our option will be a one dimensional

integral.
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6.2 The Distribution of Continuous Processes

We assume in this section that the stochastic process (St)0≤t≤T describing the price of an

underlying asset follows the Black-Scholes model. To keep it simple, we assume the drift µ

and the volatility ν to be constant on the considered time interval [0, T ]. Thus (St)0≤t≤T

satisfies the stochastic differential equation

(6.2) dSt = µStdt+ νStdBt,

where (Bt)0≤t≤T is a Brownian motion on our filtered probability space (Ω,F ,R, (Ft)0≤t≤T ).

As shown in Section 2.4

(6.3) St = S0 · e(µ− 1
2
ν2)t+νBt

is the solution to 6.2.

In this case we established two different approaches to price an option contingent to

(St)0≤t≤T . Let us consider a European style option paying the amount of f(St) at time

t ∈ [0, T ] (i.e. we do not fix the exercise date to be T ). In sections 3.1 and 3.2 we concluded

that the value of such an option at time u ∈ [0, t] must be

(6.4) f(S, t, u) = e−r(t−u)EP(f(Se(r− ν
2

2
)(t−u)+ν(Bt−Bu)))

if S is the value of the underlying stock at time u.

Equation (6.4) can also be written as a conditional expectation:

EP(f(Se(r− ν
2

2
)(t−u)+ν(Bt−Bu))) = EP(f(Se(r− ν

2

2
)(t−u)+ν(Bt−Bu))|Fu)(6.5)

= EP(f(Sue
(r− ν

2

2
)(t−u)+ν(Bt−Bu))|Fu)(Su = S),

where the notation

EP(f(Sue
(r− ν

2

2
)(t−u)+ν(Bt−Bu))|Fu)(Su = S)

means the following: the Fu −measurable random variable

EP(f(Sue
(r− ν

2

2
)(t−u)+ν(Bt−Bu))|Fu),
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which is, strictly speaking, a map of ω ∈ Ω depends actually only on the value of Su(ω) .

Now, EP(f(Sue
(r− ν

2

2
)(t−u)+ν(Bt−Bu))|Fu)(Su = S) is the value of that conditional expectation

evaluated at elements ω for which Su(ω) = S.

On the other hand we discovered in Section 5.1 that the value of our option can be

represented as (Equation (5.3) in Section 5.1)

W (f, t, u) = e−r(t−u)EQ(f(St) | Fu)(6.6)

= e−r(t−u)EQ(f(Sue
(µ− ν

2

2
)(t−u)+ν(Bt−Bu)) | Fu)

where Q is a probability on (Ω,F) which is equivalent to P turning Ŝt = er(T−t)St into a

martingale. Of course both approaches to evaluate the same option must lead to the same

value. In particular, the random variable W (f, t, u) also depends only on the value of Su

and we deduce that

EP(f(Sue
(r− ν

2

2
)(t−u)+ν(Bt−Bu))|Fu)(Su = S)(6.7)

= EQ(f(Sue
(µ− ν

2

2
)(t−u)+ν(Bt−Bu)) | Fu)(Su = S)

Making a change of variables we deduce from Equation (6.7) the following observation:
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Proposition 6.2.1 . We assume the Black Scholes model with constant drift µ and

constant volatility ν, i.e. the price of the underlying asset is given by

St = S0e
(µ− 1

2
ν2)t−νBt ,

where Bt is a Brownian motion on the filtered propbability space (Ω,F ,P, (Ft)0≤t≤T ).

Let Q be an equivalent probability which turns the discounted process Ŝt = er(T−t)St into a

martingale.

Then it follows for any t ∈ [0, T ], any u ≤ t and any continuous and bounded g : R→ R

that

(6.8) EQ(g(Bt −Bu) | Fu) = EP

(
g

(
r − µ
ν

(t− u) +Bt −Bu

)
| Fu

)
or equivalently,

(6.9) EP(g(Bt −Bu) | Fu) = EQ

(
g

(
µ− r
ν

(t− u) +Bt −Bu

)
| Fu

)
.

Proof. Assume that the value of the underlying asset at time u ≤ t is S. For a given

bounded and continuous function g : R→ R we define

f(y) = g

[
1

ν

(
log
( y
S

)
− (µ− 1

2
ν2)(t− u)

)]
,

Note that if y = Se(µ− 1
2
ν2)(t−u)+νx then g(x) = f(y). We observe that

EQ(g(Bt −Bu)|Fu)(Su = S) = EQ(f(Sue
(µ− 1

2
ν2)(t−u)+ν(Bt−Bu))|Fu)(Su = S)

= EP(f(Sue
(r− 1

2
ν2)(t−u)+ν(Bt−Bu))|Fu)(Su = S)

[By Equation (6.7)]

= EP
(
g(Bt −Bu +

r − µ
ν

(t− u))|Fu
)
(Su = S).

[everything cancels nicely]

�
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Proposition 6.2.1 says vaguely the following: The process Bt which was assumed to be a

Brownian motion on the probability space (Ω,F ,P) “behaves like a shifted Brownian motion

on (Ω,F ,Q)”. The rest of this section will be devoted to making this vague statement into

a rigorous one.

We have to introduce the notion of distributions of stochastic processes.

Definition. On C([0, T ]) we consider the σ-algebra generated by the sets of the form

{f ∈ C([0, T ]) | f(t1) ∈ A1, f(t2) ∈ A2, . . . , f(tn) ∈ An}

with any choice of n ∈ N, 0 ≤ t1 < t2 < · · · < tn ≤ T and A1, A2, . . . , An ∈ BR. These sets

are called cylindrical sets . We denote by BC the σ-algebra on C([0, T ]) generated by the

cylindrical sets.

Remark. The σ-algebra BC is similarly defined as the σ-algebra BRn , with the difference

that the finite index set {1, 2, . . . , n} is replaced by the uncountable set [0, T ]. Note that Rn

can be seen as the set of all functions f : {1, 2, 3, . . . , n} → R.

Proposition 6.2.2 . Let (Xt)0≤t≤T be a continuous process on (Ω,F ,P) then the map:

X(·) : Ω 3 ω 7→ X(·)(ω) ∈ C([0, T ])

is measurable, where X(·)(ω) is the path [0, T ] 3 t 7→ Xt(ω).

Proof. For any choice of n ∈ N, 0 ≤ t1 < t2 < t3 < · · · < tn ≤ T and A1, . . . , An ∈ BR{
ω|X(·)(ω) ∈ {f ∈ C([0, T ])|f(ti) ∈ Ai, i = 1, . . . , n}

}
=

n⋂
i=1

{ω | Xti(ω) ∈ Ai} ∈ F .

Since the cylindrical sets generate BC the claim follows. �

Definition. Let (Xt)0≤t≤T be a continuous process on (Ω,F ,P) we put for A ∈ BC :

PX(A) := P({ω ∈ Ω | X(·)(ω) ∈ A})

is called the distribution of X. Note that PX is a probability on (C([0, T ]),BC).
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Definition. For f ∈ C([0, T ]) we put

‖f‖∞ = sup
0≤t≤T

|f(t)|

and for f, g ∈ C([0, T ])

dist(f, g) = ‖f − g‖∞.

We call a function

F : C([0, T ])→ R

continuous if:

‖fn − f‖∞ → 0⇒ F (fn) −→
n→∞

F (f).

Remark. Functions F on C([0, T ]) can (and will) be seen as “path dependent” or “exotic”

options: F (S(·)(ω)) is the pay-off if ω ∈ Ω happens. The following Lemma is not hard but

technical, the main ingredient is the fact that C([0, T ]) is separable meaning that there is a

countable set D ⊂ C([0, T ]) (for example the polynomials with rational coefficients) which

is dense, i.e. for any f ∈ C([0, T ]), there is a sequence fn ∈ D with dist(fn, f) −→
n→∞

0.

Lemma 6.2.3 . A continuous function F : C([0, T ])→ R is measurable.

The next theorem specifies some conditions which are equivalent to the statement (Xt)0≤t≤T

and (X̃t)0≤t≤T have the same distribution, (and are easier to verify).
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Theorem 6.2.4 . Assume (Xt)0≤t≤T is a continuous process on the probability space

(Ω,F ,P) and (X̃t)0≤t≤T is a continuous on the probability space (Ω̃, F̃ , P̃). Then the fol-

lowing are equivalent

a) PX = P̃ eX .

b) For all n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T

P(Xt1 ,Xt2 ,...,Xtn ) = P̃( eXt1 ,..., eXtn )

P(Xt1 ,Xt2 ,...,Xtn ) denotes the joint distribution of the random vector (Xt1 , Xt2 , . . . , XTn)

(see Appendix B.2). The family (P(Xt1 ,Xt2 ,...,Xtn ))0≤t1<t2<···<tn≤T is called the family

of finite dimensional distribution of X.

c) For all n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T

P(Xt1 ,Xt2−Xt1 ,Xt3−Xt2 ,...,Xtn−Xtn−1 ) = P̃( eXt1 , eXt2− eXt1 ,..., eXtn− eXtn−1 ).

d) For all n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T and continuous bounded functions

f1, f2, . . . , fn : R→ R

EP(f1(Xt1) · f2(Xt2) · . . . · fn(Xtn)) = EeP(f1(X̃t1) · f2(X̃t2) · . . . · fn(X̃tn)).

e) For all n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T and continuous and bounded functions

f1, f2, . . . , fn : R→ R

EP(f1(Xt1)f2(Xt2 −Xt1) . . . fn(Xtn −Xtn−1)) =

EeP(f1(X̃t1)f2(X̃t2 − X̃t1) . . . fn(X̃tn − X̃tn−1)).

Remark. Theorem 6.2.4 says the the following:

Two distributions PX and P eX are, by definition, equal if PX(A) = PX̃(A) for all A ∈ BC .

This is of course the same as saying that any measurable F : C[0, T ]R is PX-integrable if
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and only it is PX̃-integrable, and that in that case

(6.10) EPX (F ) = EP eX (F )

Now Theorem 6.2.4 implies that in order to verify Equation (6.10) for all measurable func-

tions F : C[0, T ]→ R it is enough to verify it for functions of the form

F (ϕ) = f1(ϕ(t1))f2(ϕ(t2)) . . . fn(ϕ(tn)), ϕ ∈ C[0, T ],

where n ∈ N and f1, f2, . . . fn : R→ R is bounded and continuous.

Proof. (Sketch)

a⇒ b is clear.

b ⇒ a follows from the following general principle (compare Theorem B.2.5 in Ap-

pendix B.2): We are given two probabilities P1 and P2 on (Ω,F), and we assume that

they coincide on a subset D ⊂ F which has the following two properties: D generates F ,

i.e. F is the smallest σ-algebra containing D, and D is stable under taking intersections, i.e.

A,B ∈ D ⇒ A ∩ B ∈ D. Then P1 and and P2 coincide on all of F . We apply this principle

for D being the cylindrical sets on C[0, T ].

(b)⇔ (c)⇔ (d)⇔ (e) follows from the corresponding equivalences for finite dimensional

distributions.

�

Remark. As defined in Section 2.1 a Brownian motion is a process (Bt) which has the

following three properties: B0 = 0, (Bt) is continuous, and for all 0 ≤ t1 < · · · < tn and all

choices of A1, . . . An ∈ BmathbbR it follows that

P(Bt1 ∈ A1, Bt2 −Bt1 ∈ A2, . . . , Btn −Btn−1 ∈ An)

=N(0, t1)(A1) ·N(0, t2 − t1)(A2) · . . . ·N(0, tn − tn−1)(An).

The last conditions determines the finite dimensional distributions and thus by Theorem 6.2.4

(c ⇒ a), it follows that any two Brownian motions have the same (infinite dimensional)

distribution on C[0, T ].
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The distribution of a Brownian motion is usually referred to as the Wiener measure.

After this short description of infinite dimensional distribution theory we go back to con-

sider the process St = S0e
(µ− 1

2
ν2)t+νBt . We know, that Bt on the filtered space (Ω,F ,P, (Ft))

is a Brownian motion. But this implies apriori nothing about the distribution of Bt seen as

being defined on (Ω,F ,Q, (Ft)). Let us illustrate that with an example for one dimensional

distributions.

Example. Consider the standard normal distribution N(0, 1) on R. Thus, the identity

X : R → R, x 7→ x, is normal distributed on (R, BR, N(0, 1)). Now consider any density

function f on R, and define g = f
√

2πex
2/2. For any A ∈ BR let

Q(A) = EN(0,1)(1A · g)

[i.e. Q has g as Radon Nikodym derivative with respect toN(0, 1)]

=
1√
2π

∞∫
−∞

1Af(x)
√

2π ex
2/2e−x

2/2dx

=

∞∫
−∞

1Af(x)dx.

Thus Q is a probability on R with density f . Now the same map X : R 3 x 7→ x is Q-

distributed, with Q having the (arbitrarily chosen) density f .

Theorem 6.2.5 . (Bt)0≤t≤T , as process on (Ω,F ,Q), is a “shifted Brownian motion”

with shift being (r−µ)
ν
t, i.e. (Bt) on (Ω,F ,Q) has the same distribution as the process

(Bt + r−µ
ν
t)0≤t≤T on (Ω,F ,P).

Proof. By Theorem 6.2.4 (e⇒ a) we have to show that for any n ∈ N, any choice 0 ≤ t1 <
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t2 < · · · < tn ≤ T and any choice of continuous bounded functions g1, g2, . . . , gn : R→ R

EP

(
g1

(
Bt1 +

r − µ
ν

t1
)
g2

(
Bt2 −Bt1 +

r − µ
ν

(t2 − t1)
)
· . . . ·

gn
(
Btn −Btn−1 +

r − µ
ν

(tn − tn−1)
))

=EQ(g1(Bt1)g2(Bt2 −Bt1) · . . . · gn(Btn −Btn−1)).

For that note that

EQ(g1(Bt1)g2(Bt2 −Bt1) · . . . · gn(Btn −Btn−1))

= EQ(g1(Bt1) · g2(Bt2 −Bt1) · . . . · gn−1(Btn−1 −Btn−2)EQ(gn(Btn −Btn−1) | Ftn−1))

= EQ(g1(Bt1) · . . . · gn−1(Btn−1 −Btn−2)EP(gn(Btn −Btn−1 +
r − µ
ν

(tn − tn−1) | Ftn−1))

[Proposition 6.2.1]

= EP(gn(Btn −Btn−1 +
r − µ
ν

(tn − tn−1))) · EQ(g1(Bt1) · . . . · gn−1(Btn−1 −Btn−2))

[Independence of Btn −Btn−1 and Ftn−1 ]

=
n∏
i=1

EP

(
gi(Bti −Bti−1

+
r − µ
ν

(ti − ti−1)

)
[where t0 = 0, B0 = 0]

[Repeat]

= EP

(
g1

(
Bt1 +

r − µ
ν

t1
)
g2

(
Bt2 −Bt1 +

r − µ
ν

(t2 − t1)
)
· . . . ·

gn
(
Btn −Btn−1 +

r − µ
ν

(tn − tn−1)
))

[Independence]

�

Let F : C([0, T ])→ R be measurable. We want to price the security which pays F (S(·)).

By Equation (5.3) in Section 5.1, the value of such a security at time t equals to

V (F (S(·)), t) = e−r(T−t)EQ(F (S(·)) | Ft).

We split the path of St into the two parts given by S|[0,t] = (Su)u∈[0,t] (this path is realized

at time t) and the future path S|[t,T ] = (Su)u∈[t,T ].
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We also use the following convention: for two continuous functions

f1 : [0, t]→ R, f2 : [t, T ]→ R

with f1(t) = f2(t) we write (f1, f2) for the function on [0, T ] with

(f1, f2)(u) =

f1(u) if 0 ≤ u ≤ t

f2(u) if t ≤ u ≤ T .

We thirdly note that for u ≥ t,

Su = St · e(µ− 1
2
ν2)(u−t)+ν(Bu−Bt).

Using these notations we are able to write

EQ(F (S(·)) | Ft) = EQ(F (S|[0,t], Ste(µ− 1
2
ν2)((·)−t)+ν(B(·)−Bt)) | Ft).

Now we use Theorem 6.2.5 which allows us to “replace Q by P” if we pass from (Bt) to

a shifted version

EQ
(
F (S|[0,t], Ste(µ− 1

2
ν2)((·)−t)+ν(B(·)−Bt)

)
| Ft)

= EP
(
F (S|[0,t], Ste(r− 1

2
ν2)((·)−t)+ν(B(·)−Bt)) | Ft

)
.

Finally, note that the process (Bu −Bt)t≤u≤T is independent to Ft and has the same distri-

bution as (Bu−t)t≤u≤T . Thus we get

(6.11)

EQ(F (S|[0,t], Ste(µ− 1
2
ν2)((·)−t)+ν(B(·)−Bt)) | Ft) = EP(F (S|[0,t], Ste(r− 1

2
ν2)((·)−t)+ν(B(·)−Bt))).

In Equation (6.11) we think of S|[0,t] being realized. For the value of the option F (S(·)) we

therefore derive the following value at time t.

(6.12) V (F (S(·)), t) = e−r(T−t)EP(F (S|[0,t], Ste(r− 1
2
ν2)((·)−t)+ν(B(·)−Bt))).

Thus, in order to price path dependent options we have to proceed as follows:

Given the path S|[0,t] find the (one dimensional distribution) of the random variable
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F (S|[0,t], Ste(r− 1
2
ν2)((·)−t)+ν(B(·)−Bt)).

In particular, if t = 0, find the distribution of

F (S0e
(r− 1

2
ν2)(·)+νB(·)).

Now the process (B̃s)0≤s≤T−t defined by B̃s = Bs+t − Bt is a Brownian motion on the

filtered space (Ω,F ,P, (Ft+s)0≤s≤T−t) which, furthermore, is independent to Ft.

Thus, we can state our end result as follows:

Theorem 6.2.6 . Assume that F : C[0, T ]→ R is measurable and bounded and assume

that (St) satisfies the Black Scholes model with constant drift µ and constant volatility ν.

Then the value of an option paying F (S(·)) at time T has at time t ≤ T the value

(6.13) V (F (S(·)), t) = e−r(T−t)EP(F (S|[0,t], Ste(r− 1
2
ν2)((·)−t)+ν eB(·))).
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6.3 Barrier Options

The goal of this section is to find the value of an option, which pays

f( max
0≤t≤T

St)

at time T assuming the price St of the underlying asset follows the Black Scholes model. As

derived in the previous section this problem comes down to the problem of finding the value

of

(6.14) e−r(T−t)EP(f(Mt ∨ St max
0≤s≤T−t

e(r− 1
2
ν2)s+ν eBs)),

where Mt = max0≤u≤t Su (Ft-measurable), and (B̃s)0≤s≤T−t is a Brownian motion inde-

pendent to the σ-algebra Ft. In order for the formula 6.14 to make sense we will assume tht

f is integrable with respect to the distribution of ω 7→ max0≤t≤T St(ω). Later we will find

out what this means concretely.

We will first compute the Radon Nikodym derivative of a probability Q on which a shifted

Brownian motion turns into a Brownian motion without shift. This result can be used to

find the Radon Nikodym derivatives for the equivalent martingale measures.
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Theorem 6.3.1 (Girsanov’s Theorem).

Let (Bt)0≤t≤T be a Brownian motion and let ct be an adapted process with right continuous

paths having left limits on the filtered probability space (Ω,F ,P, (Ft)0≤t≤T ). Define:

Xt =

t∫
0

cu du+Bt

Yt = e
−

tR
0

cu dBu− 1
2

tR
0

c2u du
.

Then Xt is a Brownian motion on the space (Ω,F ,Q, (Ft)0≤t≤T ) where Q is defined by

Q(A) = EP(1A · YT ),

i.e. Q is a probability whose Radon Nikodym derivative is YT with respect to P.

Proof. We will only prove the claim in the case that ct is constant, the only case we will

need. Thus

Xt = ct+Bt and Yt = e−cBt−
1
2
c2t.

First note that YT is actually a Radon-Nikodym derivative. Indeed, from Proposition 2.2.3

in Section 2.2 it follows that (Yt)0≤t≤T is a P-martingale, and thus E(YT ) = E(Y0) = 1. The

process (Xt)0≤t≤T is continuous and X0 = 0. By Theorem 6.2.4 we need to show that for any

choice of n ∈ N, 0 ≤ t1 < t2 < · · · < tn ≤ T and continuous and bounded f1, . . . , fn : R→ R

it follows that

EQ

(
n∏
i=1

fi(Xti −Xti−1
)

)
= EP

(
n∏
i=1

fi(Bti −Bti−1
)

)
.

Assume, without loss of generality, that t1 = 0 , tn = T , otherwise include tn+1 = T and
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fn+1 ≡ 1. Then

EQ

(
n∏
i=1

fi(Xti −Xti−1
)

)

= EP

([
n∏
i=1

fi(Bti −Bti−1
+ c(ti − ti−1)]

]
e−cBT−

1
2
c2T

)

= EP

(
n∏
i=1

[
fi(Bti −Bti−1

+ c(ti − ti−1)) · e−c(Bti−Bti−1 )− 1
2
c2(ti−ti−1)

])

=
n∏
i=1

EP(fi(Bti −Bti−1
+ c(ti − ti−1)) · e−c(Bti−Bti−1 )− 1

2
c2(ti−ti−1))

[Independence]

Now note that for s = ti−1, t = ti, f = fi

EP(F ( Bt −Bs + c(t− s)︸ ︷︷ ︸
N(c(t−s),t−s)−distributed

) · e−c(Bt−Bs)−
1
2
c2(t−s))

=
1√

2π(t− s)

∞∫
−∞

F (x) · e−c(x−c(t−s))−
1
2
c2(t−s) · e−

(x−c(t−s))2
2(t−s) dx

=
1√

2π(t− s)

∞∫
−∞

F (x)e−
x2

2(t−s)dx

= EP(F (Bt −Bs)),

which implies the claim. �

Remark. Let Q be an equivalent martingale probability. We showed in the previous

section that (Bt)0≤t≤T (which is a Brownian motion on (Ω,F ,P)) has on (Ω,F ,Q) the same

distribution as the process (Bt + r−µ
ν
t)0≤t≤T on the space (Ω,F ,P).

Using Girsanov’s formula we can compute ρ.

Note that for any continous and bounded F : C[0, T ]→ R.

EP(F (B(·))ρ) = EQ(F (B(·)))(6.15)

= EP(F (B(·) +
r − µ
ν

t)).
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Thus a possible choice for ρ is

(6.16) ρ = YT = e−
r−µ
ν
BT− 1

2
(r−µ)2

ν2
T .

Let us explain why we say “a possible choice of ρ is YT” and why we do not claim that the

only choice for ρ is YT . Our filtration (Ft) might not only be generated by (Bt) but also by

other random variables (like for example the price of another stock). But if we denote by

(Gt) the filtration only generated by (Bt) we conclude that for the Radon Nikodym derivative

of any equivalent martingale probability Q we have

EP(ρ|GT ) = YT = e
−r − µ

ν
BT −

1

2

(r − µ)2

ν2
T
.

In the next theorem we compute the joint density of max
0≤t≤T

Bt and BT . This is exactly

the distribution we will need in order to price a barrier style opyion.

Theorem 6.3.2 (The joint distribution of max
0≤t≤T

Bt and BT ).

For T ≥ 0 let MT = sup
0≤t≤T

Bt. Then, the joint distribution of MT and BT has a density

on R2, namely

f(M,B)(m, b) =


0 if m < 0

0 if 0 < m < b

2(2m−b)
T
√

2πT
e−

(2m−b)2
2T if 0 < m, b < m.

The density of the distribution of MT is

fM(m) =

0 if m ≤ 0

2√
2πT

e−
m2

2T if m > 0

Proof. The proof is divided in three steps.

Step 1: (Reflection principle) let τ be a stopping time, and τ ≤ T . Then the random

variable BT −Bτ is symmetric, meaning that P(BT −Bτ > c) = P(Bτ −BT > c) for c ∈ R.
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First assume that τ has finitely many values 0 ≤ t1 < t2 < · · · < tn ≤ T . Then

P(BT −Bτ > c) = E

(
n∑
i=1

1{τ=ti}1[c,∞)(BT −Bti)

)

= E

(
n∑
i=1

1{τ=ti}E(1[c,∞)(BT −Bti) | Fti)

)

= E

(
n∑
i=1

1{τ=ti}E(1[c,∞)(BT −Bti))

)

= E

(
n∑
i=1

1{τ=ti}E(1[c,∞)(Bti −BT ))

)
[BT −Bti is symmetric]

= P(Bτ −BT > c)

[same computation backwards].

For a general stopping time τ ≤ T we first define a sequence of stopping times τn, all of

the τn having finite range, with τn → τ a.s. for n → ∞. For example we could define the

following sequence of stopping times (τn) (compare Exercise ......)

τn(ω) :=
n∑
i=1

t
(n)
i 1{t(n)

i−1≤τ<t
(n)
i }

(ω) + T1{tn=T}(ω)

with Pn = (t
(n)
0 , . . . , t

(n)
n ) being a partition of [0, T ] and and limn→∞ ||Pn|| = 0. Then note

that

P(BT −Bτ > c) = lim
n→∞

P(BT −Bτn > c) = lim
n→∞

E(Bτn −BT > c) = P(Bτ −BT > c).

Step 2: We show for b,m ∈ R

P(MT > m , BT < b) =


P(BT < b) if m < 0

2P(m ≤ BT )− P(b < BT ) if 0 ≤ m ≤ b

P(BT > 2m− b) if 0 < m, b < m.

We start with the case 0 < m and b < m and define the stopping time

τm(ω) =

T if Bt < m for all 0 ≤ t ≤ T

inf{t : Bt ≥ m} else
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for ω ∈ Ω.

Note that Bτm ≡ m on the set {τm < T}. We observe the following equalities

P(MT > m,BT < b) = P(τm < T,BT < b)

= P(τm < T,BT −Bτm < b−m)

= P(BT −Bτm < b−m)

[For ω ∈ {τm = T} BT −Bτm = BT −BT = 0 > b−m]

= P(Bτm −BT < b−m)

[symmetry]

= P(τm < T,Bτm −BT < b−m)

[on {τm = T} Bτm −BT = 0 > b−m]

= P(τm < T,−BT < b− 2m)

= P(−BT < b− 2m)

[on {τm = T} BT ≤ m, thus −BT ≥ −m > b− 2m, since b < m]

= P(BT > 2m− b).

If 0 ≤ m ≤ b we proceed in the following way

P(MT > m, BT < b) = P(MT > m, m ≤ BT < b) + P(MT > m, BT < m)

= P(m ≤ BT < b) + lim
ε↓0
P(MT > m,BT < m− ε)

= P(m ≤ BT < b) + lim
ε↓0
P(BT > m+ ε)

[first case with b = m− ε]

= 2P(m ≤ BT )− P(b < BT ).

The last case that m < 0 is easy. Indeed, MT ≥ M0 = 0. Thus we deduce in this case

that

P(MT > m, BT < b) = P(BT < b).

This finishes the proof of claim 2.
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Step 3: Now let f(M,B)(·, ·) be the density of the joint distribution of M and B. Then

∞∫
m

b∫
−∞

f(M,B)(x, y)dxdy = P(MT > m , BT < b).

Thus

f(M,B)(m, b) = − ∂

∂m

∂

∂b

∞∫
m

b∫
−∞

f(M,B)(x, y)dxdy

= − ∂

∂m

∂

∂b
P(MT > m,BT < b)

= − ∂

∂m

∂

∂b


P(BT < b) if m < 0

2P(m ≤ BT )− P(b < BT ) if 0 ≤ m ≤ b

P(BT > 2m− b) if 0 < m, b < m.

=


0 if m < 0

0 if 0 < m < b

− ∂
∂m

∂
∂b
P(BT > 2m− b) if 0 < m, b < m

And for 0 < m and b < m

− ∂2

∂m∂b
P(BT > 2m− b) = − ∂2

∂m∂b

 1√
2πT

∞∫
2m−b

e−
x2

2T dx


= − ∂

∂m

1√
2πT

e−
(2m−b)2

2T

=
2(2m− b)
T
√

2πT
e−

(2m−b)2
2T

which proves the formula for the density of the joint distribution of MT and BT .

The formula for the density of MT can be obtained by integrating f(M,B)(m, b) with

respect to b over (−∞,∞). But there is a faster argument: For 0 ≤ m

P(MT > m) = P(MT > m , BT <∞)

= 2P(BT > m) [Step 2]
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since 1√
2πT

e−
x2

2T is the density of BT , the claim follows. �

We now are in the position to price the value of a security which pays

F ( max
0≤t≤T

St)

at time T .

Let 0 ≤ t ≤ T be the time we want to evaluate this security, and Mt = max
0≤u≤t

Su be the

maximal value up to time t (Mt is known at time t and thus considered fixed). Then, by

Equation (6.12) in Section 6.2

W (f( max
0≤u≤T

Su), t) = e−r(T−t)EP(f(Mt ∨ max
t≤u≤T

St · e(r− 1
2
ν2)(u−t)+ν(Bu−Bt)))

= e−r(T−t)EP(f(Mt ∨ St · e
ν max
t≤u≤T

[( 2r−ν2
2ν

)(u−t)+Bu−Bt]
))

= e−r(T−t)EP(Gt( max
0≤s≤T−t

cs+ B̃s)),

where Gt(x) = f(Mt ∨ Steνx), c = 2r−ν2

2ν
, and B̃s = Bt+s − Bt, note that (B̃s)0≤s is also a

Brownian motion, which is independent to Ft and adapted to (Ft+s)s≥0.

Now, we deduce that

EP
(
Gt( max

0≤s≤T−t
cs+ B̃s)

)
= EP(Gt( max

0≤s≤T−t
cs+ B̃s)e

c eBT−t+ 1
2
c2(T−t)e−c

eBT−t− 1
2
c2(T−t))

= EQ
(
Gt( max

0≤s≤T−t
cs+ B̃s)e

c[c(T−t)+ eBT−t]− 1
2
c2(T−t))

[where Q be the probability having the Radon Nikodym derivative e−c
eBT−t− 1

2
c2(T−t)]

= EP
(
Gt( max

0≤s≤T−t
B̃s) · ec

eBT−t− 1
2
c2(T−t))

[Girsanov’s Theorem]

= e−
1
2
c2(T−t)EP(Gt( max

0≤s≤T−t
B̃s)e

c eBT−t).
Now we are in the situation, in which we need the joint distribution of max

0≤s≤T−t
B̃s and B̃T−t

which is given by Theorem 6.3.2. Thus, we can continue

= e−
1
2
c2(T−t)

∞∫
0

m∫
−∞

2(2m− b)
(T − t)

√
2π(T − t)

e−
(2m−b)2
2(T−t) Gt(m)ecb dbdm.
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Finally, replacing G and c by their definitions, we end up with

W (f( max
0≤u≤T

Su, t))

= e−(r+ 1
2

( 2r−ν2
2ν

)2)(T−t) ·
∞∫

0

m∫
−∞

2(2m− b)
(T − t)

√
2π(T − t)

e−
(2m−b)2
2(T−t) e

2r−ν2
2ν

bf(Mt ∨ Steνm)dbdm

�



6.4. ASIAN STYLE OPTIONS 175

6.4 Asian Style Options

We are now considering a path dependent option whose pay off at time T is of the form

(6.17) F (S(.)) = G

(
ST ,

∫ T

0

g(Su, u)du

)
,

where G is a continuous function on [0,∞)×R and g a continuous function on (0,∞)×[0, T ].

Example. The average strike call option

F (S(.)) =

(
ST −

1

T

∫ T

0

Sudu

)+

.

In order to find the value of that option at a given time t ∈ [0, T ] we will proceed similar

as in Section 3.1, where we derived the values of European style options. We will assume

that the price St of the underlying asset follows the Black Scholes model with constant drift

µ and constant volatility ν, i.e.

(6.18) dSt = µStdt+ νStdBt, or St = S0e
(µ− 1

2
ν2)t+νBt ,

where (Bt) is a Brownian motion on the filtered probability space (Ω,F ,P, (Ft)). We start

with the following “apriori assumption” which will be justified afterwards:

The value of the option having a pay off as in (6.17) depends only on t, St, and a third

term namely

It =

∫ t

0

g(Su, u)du.

We secondly assume that this dependence is twice differentiable in St and once differentiable

in t as well as in It.

Thus, we can write the value of our option at time t as

Vt = f(t, St, It),

where f : (0, T )× (0,∞)× R→ R is differentiable in the first and third variable and twice

differentiable in the second variable.
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Note that (It)t∈[0,T ] is an adapted stochastic process on (Ω,F ,P, (Ft)) and can be written

in differential form as

dIt = g(t, St)dt.

In particular, we deduce that dIt does not have an additional dBt term and it follows

that (in the notations introduced at the end of section 13) (dIt)
2 = 0.

As in Section 3.1, we now assume that an investor can purchase any amount of bonds

(with the coninuously compounded interest rate r) and shares of the underlying asset.

His/her portfolio at time t is a pair (at, bt), where at denotes the number of shares of the

underlying asset and bt denotes the number of bonds he/she owns at time t. (at)0≤t≤T and

(bt)0≤t≤T are processes on (Ω,F ,P) which are adapted to the filtration (Ft)0≤t≤T .

Secondly, we assume (in order to be able to apply stochastic calculus) that (at)0≤t≤T and

(bt)0≤t≤T integrable with respect to dSt and dβt, respectively. βt = β0e
rt denotes the bond

price.

We therefore deduce that

t∫
s

au dSu, and

t∫
s

bu dβu

are the gains/losses between s and t caused by the holdings of the stock and bonds respec-

tively.

Finally, assume that there is a self financing strategy (at, bt) which replicates one unit of

our option.

As in Section 3.1 we conclude that

dVt = at dSt + btdβt(6.19)

= atµSt dt+ atνSt dBt + btrβt dt

= atνSt dBt + [atµSt + rbtβt]dt.
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On the other hand we apply Ito’s formula to Vt = f(t, St, It) and obtain that

dVt =
∂

∂t
f(t, St, It)dt+

∂

∂S
f(t, St, It)dSt(6.20)

+
∂

∂I
f(t, St, It)dIt +

1

2

∂2

∂S2
f(t, St, It)d

2St

[d2It = 0]

=

[
∂

∂t
f(t, St, It) + g(t, St)

∂

∂I
f(t, St, It) + Stµ

∂

∂S
f(t, St, It)

+
1

2
S2
t ν

2 ∂
2

∂S2
f(t, St, It)

]
dt

+ Stν
∂

∂S
f(t, St, It)dBt

Comparing the “dBt-term” of equation (3) and (4) we derive that

(6.21) at =
∂

∂S
f(t, St, It).

Since the strategy (at, bt) is replicating one unit of the considered derivative we obtain

that

bt =
1

βt

[
f(t, St, It)− atSt

]
(6.22)

=
1

βt

[
f(t, St, It)− St

∂

∂S
f(t, St, It)

]
.

Inserting (6.21) and (6.22) into (6.19) and then comparing the “dt-term” of (6.19) with the

“dt-term” of (6.20) we obtain the equation

(6.23)
∂

∂t
f(t, St, It)+g(t, St)

∂

∂I
f(t, St, It)+

1

2
S2
t ν

2 ∂
2

∂S2
f(t, St, It)+rSt

∂

∂S
f(t, St, It)−rf(t, St, It) = 0

Thus, we reduced the pricing of an Asian style option to solving the following partial differ-

ential equation.

This leads us to the following theorem :
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Theorem 6.4.1 . Within the Black Scholes model the price at time t ∈ [0, T ] of an

option paying at time T the amount of

F (S(.)) = G

(
ST ,

∫ T

0

g(Su, u)du

)
is given by

Vt = f(t, St, It),

where It =
∫ t

0
g(Su, u)du and where f is the solution of

(6.24)
∂

∂t
f(t, S, I) + g(t, S)

∂

∂I
f(t, S, I) +

1

2
S2ν2 ∂

2

∂S2
f(t, S, I) + rS

∂

∂S
f(t, S, I)− rf(t, S, I) = 0

with the terminal condition

f(T, S, I) = G(S, I).

In that case a hedging portfolio (at, bt) is given by

at =
∂

∂S
f(t, St, It), and(6.25)

bt =
1

βt

[
f(t, St, It)− St

∂

∂S
f(t, St, It)

]
(6.26)

Remark. Note that the Equation (6.24) is a generalization of the Equation (BSE) we

derived in Section 3.2 for European style options (take g = 0). Unfortunately, (6.24) is in

general not solvable in closed form. In order to solve it, numerical methods have to be used

to achieve approximate solutions.



Appendix A

Some Basic Notions and Results of

Linear Analysis

A.1 Basics of Linear Algebra and Topology in Rn

For n = 1, 2, 3, . . . we put Rn := {(x1, . . . , xn) : x1, x2, . . . , xn ∈ R}, the canonical n-

dimensional vector space over R. For x, y ∈ Rn, x = (x1, . . . , xn) and y = (y1, . . . , yn),

the scalar product of x and y is defined by

x · y = x1y1 + x2y2 + · · ·+ xnyn =
n∑
i=1

xiyi.

The euklidean length of x is

‖x‖ =
√
x · x =

(
n∑
i=1

x2
i

)1/2

.

The following properties of the scalar products and lengths of vectors in Rn can be easily

obtained from the definitions.

179
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Proposition A.1.1 . Let x, y, z ∈ Rn and a ∈ R.

1) x · y = y · x,

2) x · (ay) = (ax) · y = a(x · y),

3) x · (y + z) = x · y + x · z,

4) ||x± y||2 = ||x||2 + ||y||2 ± 2x · y

5) ||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2 (Parallelogramm identity)

6) ||x+ y|| ≤ ||x||+ ||y|| (Triangle inequality)

7) |x · y| ≤ ||x|| · ||y|| (Inequality of Cauchy and Schwartz)

For x ∈ Rn and A ⊂ Rn, dist(x,A) = infy∈A ||y − x|| is the distance between x and A.

For x ∈ Rn and ε > 0 the set Uε(x) = {y ∈ Rn | ‖x − y‖ < ε} is called the ε-neighborhood

of x. A set A ⊂ Rn is called open if for each x ∈ A there is an ε > 0 (depends on x) so that

Uε(x) ⊂ A. A complement of an open set is called closed. Note that if B ⊂ Rn is closed and

x 6∈ B, then dist(x,B) > 0. Indeed, since x lies in the open set Rn \ B there is an ε > 0 so

that Uε(x) ⊂ Rn \B. Thus Uε(x) ∩B = ∅ which means that for all y ∈ B ||x− y|| ≥ ε > 0.

A sequence (x(k)) ⊂ Rn is called convergent to x ∈ Rn if ||x(k) − x|| → 0, for n → ∞.

If x(k) lies in a closed set B and converges to an x ∈ Rn then also x ∈ Rn. Indeed, if we

had x 6∈ B there would be an ε > 0 so that Uε(x) ∩ B = ∅, but then it would follow that

dist(x, {x(k)|k ∈ N}) ≥dist(x,B) ≥ ε which contradicts the convergence of the sequence to

x. From the defintion of || · || it follows that a sequence (x(k)) ⊂ Rn converges to some x ∈ Rn

if and only if the coordinates of x(k) converge to the corresponding coordinates of x, i.e. if

x
(k)
j → xj, n → ∞, for all j = 1, 2, . . . , n. Therefore we can conclude that every bounded

sequence (x(k)) ⊂ Rn (meaning sup∈N ||x(k)|| <∞ ) has a convergent subsequence.

From these observations we can easily deduce the following Proposition which will be of
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use in the next section.

Proposition A.1.2 . If B ⊂ Rn is closed and a ∈ Rn \ B, then there exists a b ∈ B

with minimal distance to a, i.e.

||a− b|| = dist(a,B) > 0.

Let L ⊂ Rn be a subspace of Rn, i.e. a subset for which αx + βy ∈ L, whenever x, y ∈ L

and a, b ∈ R. The orthogonal complement of L in Rn is the set

L⊥ = {y ∈ Rn|∀x ∈ L : x · y = 0}.

It is easy to observe that L⊥ is also a subspace of Rn. If L is generated by the vectors

a(1), a(2), . . . a(r), i.e. if

L = {
r∑
i=1

αia
(i)|α1, α2, . . . αr ∈ R}

we deduce that

L⊥ = {y ∈ Rn|∀i = 1, . . . r : a(i) · y = 0}.

Now let c(1), c(2), . . . , c(d) be a basis of L (every element of L can be written in a unique

way as linear combination of c(1), c(2), . . . , c(d)). Using the Gram-Schmidt method we turn

c(1), c(2), . . . , c(d) into an orthonormal basis a(1), a(2), . . . , a(d) ( ||a(i)|| = 1 and a(i) · a(j) = 0 if

i 6= j): Choose

a(1) = c(1)/||c(1)||, and

ã(2) = c(2) − a(1)(c(2) · a(1)) (Note that ã(2) · a(1) = 0) and then define a(2) = ã(2)/||ã(2)||

More generally: If a(1), a(2), . . . , a(i) have been defined, then

ã(i+1) = c(i+1) −
i∑

j=1

a(i)(c(i+1) · a(i)) and then definea(i+1) = ã(i+1)/||ã(i+1)||.

We can extend a(1), a(2), . . . , a(d) to a basis a(1), a(2), . . . , a(n) of Rn which, using the proce-

dure of Gram and Schmidt again, can be assumed to be orthonormal. We observe that

a(d+1), a(2), . . . , a(r) must be a basis of L⊥. Indeed, since a(d+1), a(d+2), . . . , a(n) are orthogonal
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to a basis of L these vector lie in L⊥. Secondly every vector y in L⊥ is (a(1), a(2), . . . , a(n) is

a basis of Rn) of the form

y =
n∑
i=1

αia
(i),

it follows for i = 1, . . . d that αi = y · a(i) = 0 since y ∈ L⊥. Thus y is actually a linear

combination of a(d+1), . . . a(n) and we deduce that a(d+1), . . . a(n) is a basis for L⊥. From these

observations we deduce the following Proposition.

Proposition A.1.3 . If L is a subspace of Rn. Then for each x ∈ Rn there are unique

elements x1 ∈ L and x2 ∈ L⊥ so that x = x1 + x2.

Secondly, the orthogonal complement of L⊥ is L,i.e. (L⊥)⊥ = L.

Proof. Let a(1), a(2), . . . , a(n) be an orthogonal basis of Rn so that a(1), a(2), . . . , a(d) is a basis

of L and a(d+1), a(d+2), . . . , a(n) is a basis of L⊥. Such a basis exists as shown above. Thus,

every x ∈ Rn can be represented in exactly one way as

(1) x =
n∑
i=1

αia
(i), with α1, . . . αn ∈ R.

Thus x1 =
∑d

i=1 αia
(i) ∈ L, x2 =

∑n
i=d+1 αia

(i) ∈ L⊥, and x = x1 + x2. This representa-

tion is unique since the representation of x in (1) is unique. Secondly, since a(d+1), a(2), . . . , a(n)

is a basis of L⊥ it follows as observed above that a(1), a(2), . . . , a(d) must be a basis of (L⊥)⊥,

and thus it follows that (L⊥)⊥ = L. �

Now let a(1), a(2), . . . , a(r) ∈ Rn be any finite sequence which generates the subspace L.

We define A to be the n by r matrix whose columns consist of a(1), a(2), . . . , a(r) . Then L is

the range of A, denoted by R(A) i.e.

L = {
r∑
i=1

xia
(i) : x1, x2, . . . xr ∈ R} = {A ◦ x|x ∈ Rr}.
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The transpose At of A is the r by n matrix whose i-th row is the i-th column of A. We

deduce that L⊥ is the null space of At, denoted by N (At), i.e.

L⊥ = {x ∈ Rn : ∀i = 1, . . . r : a(i) · x = 0} = {x|At ◦ x = 0} = N (At).

From this observation and Proposition A.1.3 one can deduce the following principle,

sometimes called the Fundamental Theorem of Linear Algebra.

Theorem A.1.4 . Let A be an n by m matrix. Then N (At) is the orthogonal comple-

ment of R(A).
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A.2 The Theorem of Farkas and Consequences

In this section we want to present the results necessary to prove the existence of state

price vectors in an arbitrage free Arrow-Debreu model (compare Section 1.1). These results

are part of the theory of linear prgramming. We will not try to attempt to present an

introduction to this area, neither will we present its important impact and use in Economics.

The reader can be referred to a wide ranging literature (cf. [Gale],......). In order to order to

keep this exposition as self-contained as possible we merely want to present one important

result, the Theorem of Farkas, and derive some consequences which are important to us.

The following Theorem is Tucker’s version of Farkas’ Theorem (for Farkas’ original The-

orem see Exercise....).

Theorem A.2.1 (Tucker’s version of Farkas’ Theorem).

Let A be an n by m matrix and b ∈ Rm. Then one and only one of the following two

statements is true.

1) There exists an x ∈ Rn+ so that At ◦ x = b.

2) There exists a y ∈ Rm so that A ◦ y ∈ Rn+ and b · y < 0.

Proof. First we show that the statements are exclusive. Indeed if x ∈ Rn+ satsified (1) and

y ∈ Rm satisfied (2) we would conclude on the one hand that y · (At ◦ x) = (A ◦ y) · x ≥ 0

since x and A ◦ y have both non negative coordinates. On the other hand we would observe

that y · (At ◦ x) = y · b < 0 and derive a contradiction.

Secondly we assume that (1) does not apply and have to show (2). We let C = {At ◦ z :

z ∈ Rn+}. Note that C is a cone in Rm which means that C is closed under addition and

multiplication by non negative scalars. We can think of C being the set of all non negative

combinations of the rows of A which we denote by A(1,·), A(2,·), . . . , A(n,·). Since (1) does not

apply we deduce that b 6∈ C and since C is a closed set it follows that dist(b, C) > 0 and we

can choose by Proposition A.1.2 a y(0) ∈ C having minimal distance to b. We now want to
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show that y = y(0) − b satisfies the conditions in (2).

First we claim that for all z ∈ C it follows that z · y ≥ 0. Indeed, for ε > 0it follows that

y(0) + εz ∈ C and thus that

||y(0) − b||2 ≤ ||y(0) + εz − b||2 (since||y(0) − b|| = dist(b, C).

By cancellation it follows that

0 ≤ 2ε(y(0) − b)z + ε2||z||2.

If it where true that (y(0) − b) · z < 0 we could choose ε > 0 small enough that this

inequality reverses which would lead to a contradiction.

Since the rows of A lie in C we first deduce that A(i,·) · y ≥ 0 which implies that the

coordinates of A ◦ y are non negative.

In order to verify the second condition of (2) we observe that in the proof of above claim

we actually only used that y(0) + εz ∈ C. Since for 0 < ε < 1, it follows that y(0) + εy(0)

and y(0) − εy(0) lie in C we deduce from the proof of the claim that y(0) · y = 0 and, thus,

we deduce that that y · b = y · (b − y(0)) = −||y||2 = −dist2(b, C) < 0 which is the second

condition in (2). �

From Farkas’ Theorem we now can dedudce the following Corallaries.

Corollary A.2.2 . Let A be an n by m matrix. Then one and only one of the following

statements is true.

1) There an x ∈ Rn+ \ {0} such that At ◦ x = 0.

2) There is a y ∈ Rm such that A ◦ y ∈ Rn++.

Proof. The two statements are exclusive. Indeed, if x satisfied (1) and y satisfied (2) then

on the one hand we would deduce by (1) that y · (At ◦ y) = 0. But on the other hand we
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would deduce from (2) that y · (At ◦ x) = (A ◦ y) · x > 0, since the coordinates of (A ◦ y) are

strictly positive and since the coordinates of x are non negative and at least one of them is

not equal to zero.

Secondly, we define

Ã =


1 A(1,1) A(1,2) . . . A(1,m)

1 A(2,1) A(2,2) . . . A(2,m)

...
...

...

1 A(n,1) A(n,2) . . . A(n,m)

 =


1
... A

1


and thus

Ãt =


1 1 . . . 1

A(1,1) A(2,1) . . . A(n,m)

...
...

...

A(1,m) A(2,m)
... A(n,m)

 =


1 1 . . . 1

At

 .
Put also

b̃ =


1

0
...

0

 .

If now (1) of A.2.2 does not hold there cannot be an x ∈ Rn+ so that Ãt ◦ x = b̃. From

A.2.1 it follows therefore that there is a ỹ ∈ Rm+1 so that b̃ · ỹ = ỹ1 < 0 and Ã◦ ỹ ∈ Rn+, thus

Ã ◦ ỹ = ỹ1


1

1
...

1

+ A ◦


ỹ2

ỹ3

...

ỹm+1

 ∈ R
n
+.

Putting now y = (ỹ2, ỹ3, . . . , ỹm+1), it follows that for each i = 1, . . . n,

A(i,·) · y = Ã ◦ ỹ − ỹ1 ≥ −ỹ1 > 0,

which implies (2) of A.2.2, and finishes the proof. �
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If L ⊂ Rn is a subspace which is generated by the vectors a(1), a(2), . . . a(m), and if A is the

n by m matrix whose columns are these vectors, we observed in A.1 that L is the range of

A and L⊥ is the null space of At. Thus Corollary A.2.2 can be translated into the following

result.

Corollary A.2.3 . If L ⊂ Rn is a subspace of Rn, and if L⊥ is its orthogonal complement

one and only one of the following statements can be true.

1) L⊥ ∩ Rn+ contains a non zero element.

2) L contains a vector with strictly positive coordinates.

The roles of L and L⊥ in Corollary A.2.3 can be interchanged. If A is an n by m matrix we

choose L = N (At) and L⊥ = R(A) and Corollary A.2.3 can be translated into a statement

about A again.

Corollary A.2.4 . Let A be an n by m matrix. Then one and only one of the following

statements is true.

1) There is an x ∈ Rn++ for which At ◦ x = 0.

2) There is a y ∈ Rm for which A ◦ y ∈ Rn+ \ {0}.
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Appendix B

Basic Notions of Probability Theory,

Conditional Expectations

In this part we want to recall the basic notions of probability theory. In particular we will

introduce the concept of conditional expectations . This notion gives the theoretical frame

for stating and solving questions of the following form:

– Assuming the Dow Jones index was 7’900 on April 17, what is it expected value on

April 18?

– Assuming the Federal Bank increases the prime rate by .5%, what is the expected

change of the IBM stock?

We will proceed as follows: First we discuss the theory using a single easy example (Sec-

tion B.1) and discuss the log–binomial model of the Sections 1.3 and 1.4 in more detail.

Using this model we will introduce the concepts of measurability, expected values and con-

ditional expected values. We then deal with the more general case (sections B.2 and B.3).

These two sections should by no means be seen as an exposition or even an introduction

to the theory of probability. It merely mentions the most basic notations and recalls some

theorems important to us.

189
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For the reader who is for the moment only interested in the discrete theory as developped

in Chapter 1 Section B.1 alone provides a sufficient back ground in probability theory for

the understanding of discrete probability space as needed in Chapter 1.
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B.1 An example: The Binomial and Log–Binomial Pro-

cess

As in Section 1.3 we consider a stock whose price changes after each trading time either by

the factor U or D, with 0 < D < U . We consider n such moves and assume that the i-th

movement of the price is independent from the previous one, a concept we will have to define

precisely later. We can simulate this stock price by tossing a coin n times. Each time we

obtain heads the stock price will be multiplied by U , if tails appears it will be multiplied by

D.

The set of all possible outcomes is

Ω = {H,T}n =
{
ω = (ω1, ω2, . . . ωn)| ωi ∈ {H,T} for i = 1, 2, . . . n

}
.

We denote the probability that head appears by p (not necessarily equal to 1
2
) and the

probability that tails comes up is denoted by q = 1 − p. Now, if ω = (ω1, . . . , ωn) ∈ Ω, the

probability that ω happens is given by

(1) P({ω}) = p# Heads in ω · q# Tails in ω.

For example

P({H,H, . . . H︸ ︷︷ ︸
k-times

, T, T, . . . , T︸ ︷︷ ︸
n−k-times

}) = pkqn−k.

For any event , i.e. any set A ⊂ Ω, we let

P(A) =
∑
ω∈A

P({ω}).

Thus P is a map on all events having the following properties (Kolmogorov’s axioms)

1) For any event A: 0 ≤ P(A) ≤ 1,

2) P(∅) = 0, and P(Ω) = 1,

3) if A1, A2, A3, . . . are mutually disjoint (meaning Ai ∩ Aj = ∅ if i 6= j) then

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak).
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Remark. In (1) we tacitely assumed the outcomes of tossing the coin to be indepen-

dent. This means the following. For i = 1, . . . n let Ei(ωi) be the event that in the

i-th tossing of the coin ωi appears. For example if n = 3, i = 2, and ωi = H, then

E2(H) = {HHH,THH,HHT, THT}.

We have {ω} =
⋂n
i=1Ei(ωi) and P(Ei(ωi)) is either p (if ωi = H) or q (if ωi = T ).

Independence of the tosses means now that the probability of the intersections of the Ei(ωi))’s

equals to the product of their probability, i.e.

(2) P({ω}) = P(
n⋂
i=1

Ei(ωi)) =
n∏
i=1

P(Ei(ωi)).

More generally if 1 ≤ i1 < i2 < . . . < ir ≤ n, then

(3) P(
r⋂
j=1

Eij(ωij)) =
r∏
j=1

P(Eij(ωij)).

We now define the prices of the stock at the times 0, 1 . . . , n as random variables on Ω. In

our case a random variable is simply a map X : Ω→ R. We let for i = 0, 1, 2 . . . n and ω ∈ Ω

(4) εi = εi(ω) =

1 if ωi = H

0 if ωi = T

and

Hi = Hi(ω) =
i∑

j=1

εj (number of heads up to time i)(5)

Ti = Ti(ω) =
i∑

j=1

1− εj = i−Hi (number of tails up to time i)

(H0 = T0 = 0)

Note that with this notations we can write

(6) P({ω}) = pHn(ω)qTn(ω), for ω ∈ Ω
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And finally we define the stock price at time i = 0, 1, . . . n to be

(7) Si = S0U
HiDTi .

Thus, Si satisfies the following recursive formula for i = 1, . . . , n

(8) Si = Si−1U
εiD1−εi .

The expected value of a random varibale X : Ω→ R is defined to be

(9) EP(X) =
∑
ω∈Ω

X(ω)P({ω}) =
∑
ω∈Ω

X(ω)pHn(ω)qTn(ω).

Proposition B.1.1 . Taking expected values is a linear operation, i.e. X and Y are

random variables on Ω and α, β ∈ R, then

(10) EP(αX + βY ) = αEP(X) + βEP(Y )

If A ⊂ Ω is an event we denote by 1A : Ω→ R the indicator function of A, the function

assigning to each ω ∈ Ω the value 1 if ω ∈ A, and assigning to each ω ∈ Ω \ A the value

0.Thus we have EP(1A) = P(A).

IfX is a random variable on Ω with the values x1, x2, . . . xr, and if we letAi = X−1({xi}) =

{ω ∈ Ω|X(ω) = xi}, we can write X as X =
∑r

i=1 xi1Ai and

(11) EP(X) =
r∑
i=1

P(Ai)xi.

For i = 0, 1, . . . n Si can achieve the values S0U
jDn−i with j = 0, 1, . . . , i (stock moved

by the factor U j times and moved by the factor D i − j times) and we compute for the

expected value of Si
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EP(Si) = S0

i∑
j=0

P(Si = S0U
jDi−j)U jDi−j(12)

= S0

i∑
j=0

P(Hi = j)U jDi−j = S0

i∑
j=0

(
i

j

)
U jDi−jpjqi−j = S0(pU + qD)i,

with

(
i

j

)
=

i!

j!(i− j)!
(0! = 1). The last equality in (12) uses the binomial formula while

second to the last equality uses the following combinatorical principle:

Proposition B.1.2 . There are
(i
j

)
words one can form out of j H’s and i− j T’s.

Definition. A finite sequence of random variables X0, X1, . . . Xn on Ω is called a Binomial

process of length n, with starting point X0, step sizes u and d, and success probability p if

X0 is constant and

Xi = X0 +
i∑

j=1

εju+
i∑

j=1

(1− εj)d = X0 +Hiu+ Tid,

where εj, Hj and Tj were defined in (4) and (5).

In this case we call Yi = eXi , i = 0, 1 . . . n the corresponding log–binomial process.

Remark. Note that S0, S1, . . . , Sn is a log–binomial process, and (logSi) is a binomial

process with starting point logS0, step sizes u = logU , and d = logD, and success probability

p.

We consider now a random variable X : Ω → R (for example X = Sn) and assume the

time is i, i ∈ {1, 2, . . . n}. At this time we know already the outcomes of the first i tosses, say

they are ν1, ν2, . . . , νi ∈ {HT}. If the value X(ω) only depends on the first i outcomes (for

example if X = Si) then X is realized, meaning by the time i the value of X is determined.

Otherwise, we can ask ourselves, what is the expected value of X, given that the first i

outcomes were ν1, ν2, . . . , νi?
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In our simple case the question can be answered easily, no theory is needed. Indeed we

only have to change our random variable and the underlying probability space. Our new set

of possible outcomes is

Ω̃(i) = {(ω1, ω2, . . . , ωn−i)|ωj ∈ {H,T} for j = 1, . . . n− i}.

Our new probability is given by

P̃(i)({ω̃}) = p# Heads in ω̃ · q# Tails in ω̃, for ω̃ ∈ Ω̃(i),

and the new random variable we have to consider is

X(ν1,...νi) : Ω̃(i) → R, (ω̃1, . . . , ω̃n−i) 7→ X(ν1, . . . , νi, ω̃1, . . . ω̃n−i).

The conditional expectation of X, given that the first i outcomes were ν1, . . . , νi, should then

be defined to be

(13) EeP(i)(X(ν1,...νi)).

We denote this value for the moment by EP(X|ν1, . . . νi) and note that it can be seen as a

map on all i-tuples ν ∈ {H,T}i.

For ω̃ ∈ Ω̃(i), we let H̃(ω̃) and T̃ (ω̃) be the number of heads respectively tails in ω̃. Then

we deduce as in (9)

EP(X|ν1, . . . νi) =
∑
eω∈Ω

X(ν1, . . . νi, ω̃1, . . . , ω̃n−i)P̃(i)({ω̃})(14)

=
∑
eω∈Ω

X(ν1, . . . νi, ω̃1, . . . , ω̃n−i)p
eH(ω̃)q

eT (ω̃)

For X = Sn the computation of the conditional expectation is easy because we can write

Sn = S0U
HnDTn = S0U

HiDTi︸ ︷︷ ︸
depends on ω1...ωi

· UHn−HiDTn−Ti︸ ︷︷ ︸
depends on ωi+1...ωn

= SiU
Hn−HiDTn−Ti ,
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Therefore the same computations as in (12) lead to

EP(Sn|ν1, . . . νi) = Si

n−i∑
j=0

(
n− i
j

)
U jDn−i−jpjqn−i−j

(replace S0 by Si and n by n− i).

We want to pass to a more theoretical point of view. For i = 0, 1, . . . , n we let Fi be “all

the events for which we know whether or not they will be realized by the time i”. This has

to made more precise as follows.

For ν1, . . . νi ∈ {H,T} we let

A(ν1, . . . νi) = {(ν1, . . . νi)} × Ω̃(i) = {ω̃ ∈ Ω|ω̃1 = ν1, . . . , ω̃i = νi} =
i⋂

j=1

Ej(νj),

i.e. A(ν) is the set of all possible extensions of ν ∈ {H,T}i to an element in Ω. It follows

that P(A(ν)) = pHi(ν)qTi(ν). Note that by time i we know whether or not A(ν) occured.

Formally Hi is a map on {H,T}n but since Hi(ω) only depends on the first i entries the

notation Hi(ν) for ν ∈ {H,T}i is well defined. Since secondly it follows for ω = (ω1, . . . ωn)

that Hn(ω) = Hi(ω1, . . . ωi) + H̃n−i(ωi+1, . . . ωn) we note that from (14) it follows that for

ν ∈ {H,T}i

EP(X|ν1, . . . νi) =
∑
eω∈Ω

X(ν1, . . . νi, ω̃1, . . . , ω̃n−i)p
eH(ω̃)q

eT (ω̃)(15)

= p−Hi(ν)q−Ti(ν)
∑
eω∈Ω

X(ν1, . . . νi, ω̃1, . . . , ω̃n−i)p
H(ν,ω̃)qT (ν,ω̃)

= p−Hi(ν)q−Ti(ν)
∑

ω∈A(ν)

X(ω)P({ω})

=
EP(1A(ν)X)

P(A(ν))
,

We put Fi to be the set of all events consisting of ∅, Ω, and all possible unions of sets of the

form A(ν1, . . . νi). Note that (A(ν))ν∈{H,T}i is a partition of Ω, meaning that these sets are

pairwise disjoint and their union is all of Ω. Therefore there exists for each A ∈ Fi a unique
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set I ⊂ {H,T}i so that

A =
⋃
ν∈I

A(ν), (
⋃
ν∈∅

A(ν) = ∅)

and each set which has such a representation is in Fi. For example F0 = {∅,Ω} (already

before tossing the coin we know that Ω will happen and ∅ will not happen), and F1 =

{∅,Ω, A(H), A(T )}.

For i = 0, 1 . . . , n the sets of events Fi are σ-algebras, meaning that:

Definition. A σ-algebra on Ω is a set F , consisting of subsets of Ω, having the following

three properties:

1) ∅ and Ω are in F ,

2) if A ∈ F then also Ac = Ω \ A ∈ F , and

3) if A1, A2, . . . ∈ F (countably many) then also ∪∞i=1Ai = A1 ∪ A2 ∪ . . . ∈ F .

A random varibale X : Ω→ R is called F -measurable if for all a ∈ R

X−1((−∞, a]) = {ω ∈ Ω|X(ω) ≤ a} ∈ F .

In our simple example Fi-measurability can be described as follows.

Proposition B.1.3 . For a random variable X : Ω → R, and i = 0, 1, . . . n, the

following are equivalent

1) X is Fi-measurable,

2) X is constant on the sets A(ν1,...νi) for ν1, . . . , νi ∈ {H,T}, i.e. X can be written as

X =
∑

ν∈{H,T}i
xν1A(ν),

where xν ∈ R for ν ∈ {H,T}i.
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Remark. Proposition B.1.3 says in particular that a random variable X : Ω → R is Fi-

measurable if and only if the value X(ω) only depends on the first i coordinates of ω. We

therefore will often write X(ω1, . . . , ωi) instead of X(ω1, . . . , ωn).

Proof of B.1.3. Let X : Ω → R and let x1 < x2 < . . . xr the possible values of X in

increasing order.

If X is Fi-measurable we find sets I1 ⊂ I2 ⊂ . . . Ir = {H,T}i, so that

X−1((−∞, xj]) =
⋃
ν∈Ij

A(ν), for j = 1, . . . i.

This implies that

X−1({xj}) =
⋃

ν∈Ij\Ij−1

A(ν), for j = 1, . . . i, (I0 = ∅),

which shows is constant on the sets A(ν), ν ∈ {H,T}i.

Conversely, if X is constant on the sets A(ν), ν ∈ {H,T}i, we are able to write X as

X =
∑

ν∈{H,T}i
xν1A(ν), for some choices of xν ∈ R, ν ∈ {H,T}i.

We conclude that for a ∈ R,

X−1((−∞, a]) =
⋃

ν∈{H,T}i
with xν≤a

mA(ν)

which imples that X is Fi-measurable. �

The following observation follows easily from Proposition B.1.3.

Proposition B.1.4 . For random variables X, Y : Ω → R, which are Fi-measurable,

i = 0, 1, . . . n, and for α, β ∈ R the random variables αX + βY and XY are also Fi-

measurable.

Note that Si is Fi measurable since Si(ω) only depends on ω1, . . . ωi.
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For a random variable X we define now the conditional expectation with respect to Fi to

be the map on Ω denoted by EP(X|Fi):

EP(X|Fi) : Ω→ R, ω 7→ EP(X|ω1, ω2, ....ωi) [see (13)].

Using (15) we can write

(16) EP(X|Fi) =
∑

ν∈{H,T}i

EP(1AνX)

P(A(ν))
1A(ν).

This means that for an ω = (ω1, ω2, . . . , ωn) ∈ Ω

(17) EP(X|Fi)(ω) = EP(X|Fi)(ω1, . . . , ωi) =
EP(1A(ω1,...,ωi)X)

P(A(ω1, . . . , ωi))
.

We note that the conditional expectation of a random variable X on Ω with respect to

Fi is Fi-measurable. Actualy more can be said. The following Proposition gives a charac-

terization of conditional expectations and will lead to the general definition of this concept

in Section B.3.

Proposition B.1.5 . If X is a random variable on Ω and i = 0, 1, . . . n. Then EP(X|Fi)

is the only random variable Y on Ω which has the following two properties.

1) Y is Fi-measurable, and

2) for any A ∈ Fi it follows that

EP(1AX) = EP(1AY ).

Proof. It follows from Proposition B.1.3 and from (16) that EP(X|Fi) is Fi measurable.
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For A =
⋃
ν∈I A(ν) ∈ Fi, I ⊂ {H,T}i, we deduce that

EP
(
1AEP(X|Fi)

)
=EP

1A
∑

ν∈{H,T}i

EP(1AνX)

P(A(ν))
1A(ν)


=EP

(∑
ν∈I

EP(1AνX)

P(A(ν))
1A(ν)

)
=
∑
ν∈I

EP(X1A(ν))

=EP(X1A),

which verifies (2). If the random variables Y and Z satisfy (1) and (2), and if ν ∈ {H,T}i,

then by (1) they must be constant on A(ν). Say, they achieve on that set the values yν and

zν respectively. Thus

yνP(A(ν)) = EP(Y 1Aν )

= EP(X1Aν ) (By (2))

= EP(Z1Aν ) (By (2))

= zνP(A(ν)),

thus yν = zν and thus Y = Z, which shows the uniqeness of a random variable satisfying (1)

and (2). �

Here some easy properties of conditional expectations:
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Proposition B.1.6 . Assume X, Y : Ω→ R, α, β ∈ R, and i, j = 0, 1, . . . n.

1) For EP(·|Fi) is linear, i.e.

EP(αX + βY |Fi) = αEP(X|Fi) + βEP(Y |Fi).

2) If Y is Fi-measurable then

EP(Y X|Fi) = Y EP(X|Fi).

3) (Tower property). If i < j. Then

EP(X|Fi) = EP(EP(X|Fj)|Fi).

Sketch of a proof. We have to verify that the left sides of the equation satisfy (1) and (2)

of Theorem B.1.5. This can be done easily. �

Finally we want to extend the notion of independence to random variables.

Definition. We call the random variables X1, X2, . . . , Xr independent if for any choice of

a1 ≤ b1, a2 ≤ b2,..., ar ≤ br it follows that

(18) . P(
⋂r

j=1
{Xj ∈ [aj, bj]}) =

r∏
j=1

P({Xj ∈ [aj, bj]}).

If F is a σ-algebra of subsets of Ω and X is a random variable we say that X is independent

of F if for any A ∈ F it follows that X and 1A are independent, i.e. if for a ≤ b, P({a ≤

X ≤ b} ∩ A) = P({a ≤ X ≤ b})P(A).

If X and Y are independent, write X and Y as X =
∑m

i=1 1Aixi and Y =
∑`

i=1 1Biyi, with

x1 < x2 < . . . , xk and y1 < y2 < . . . < y` being the possible values of X and Y respectively
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and Ai = {ω|X(ω) = xi} and Bi = {ω|Y (ω) = yi} then we deduce that

EP(XY ) = EP =
k∑
i=1

∑̀
j=1

xiyjP(AiBj) =
k∑
i=1

∑̀
j=1

xiyjP(Ai)P(Bj)

[P(Ai ∩Bj) = P({X ∈ [xj, xj]} ∩ {Y ∈ [yj, yj])}) and use (18)]

=
k∑
i=1

xiP(Ai)
∑̀
j=1

yjP(Bj) = EP(X)EP(Y ).

More generally, we can prove in the same way the following Proposition.

Proposition B.1.7 . If X1, X2, . . . Xr are independent random variables on Ω it follows

that

EP(
r∏
i=1

Xi) =
r∏
i=1

EP(Xi)

Proposition B.1.8 . If X is a random variable which is independent of Fi then

EP(X|Fi) = EP(X)

Sketch of a proof. We have to show that the constant variable Y = EP(X) satisfies (1)

and (2) of Theorem B.1.5. (1) is clear while (2) follows from the definition of independence.

�

Proposition B.1.8 can be interpreted as follows. If the random X is independent to Fi,

then the knowledge of whether or not an event A ∈ Fi happened, does not give us any

further information on what we expect X to be.
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B.2 Some Basic Notions from Probability Theory

Assume Ω is the set of all possible outcomes of a stochastic experiment. A probability, is

then a function which assigns to “certain subsets” A of Ω a value between 0 and 1, which we

call the probability of A and denote by P(A). Probabilities will be defined on “σ-algebras

on Ω”.

Definition: A σ-algebra on Ω is a set F consisting of subsets of Ω with the following

properties

a) For the empty set ∅ : ∅ ∈ F

b) If A ∈ F then Ω\A ∈ F (Ω\A = {x ∈ Ω|x /∈ A}, the complement of A).

c) If An ∈ F , n ∈ N then
⋃∞
i=1Ai = {x ∈ Ω|∃i ∈ N x ∈ Ai} ∈ F .

If F is a σ-algebra on Ω we call the pair (Ω,F) measurable space.

Examples. The following sets F of subsets of Ω are σ-algebras.

a) F = {∅,Ω},

b) for A $ Ω, then F = {∅, A,Ω\A,Ω},

c) F = all subsets of Ω.

.

Often σ-algebras are “generated by a given set of subsets of Ω”.

Proposition B.2.1 . Let E be a set consisting of subsets of Ω. Then the intersection

of all σ-algebras on Ω containing E, i.e.⋂{
F : F is σ-algebra and E ⊂ F

}
,

is again a σ-algebra which will be called the σ-algebra generated by E and denoted by σ(F).

Examples.
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a) If Ω = R, the Borel σ-algebra on R is the σ-algebra generated by all intervals. We

denote it by BR. If A ⊂ R, BA denotes the restriction of BR to A, namely

BA = {A ∩B : B ∈ BR}.

It is easy to see that BA is still a σ-algebra.

b) If Fi is a σ-algebra on the set Ωi, i = 1, 2 . . . n, then the product σ-algebra is the σ-

algebra on Ω1 ×Ω2 . . .Ωn generated by the rectangles A1 ×A2 ×An, with Ai ∈ Fi, for

i = 1, 2, . . . n. We denote it by ⊗ni=1Fi. In the case that Ωi = R, i = 1, . . . n we put

BRn = BR ⊗ BR . . .BR.

Proposition B.2.2 . If F is a σ-algebra on Ω, then

a) Ω ∈ F

b) If A,B then A∩B, A\B = {x : x ∈ A x /∈ B}, and A4B = (A\B)∪ (B\A) ∈ F .

c) If A1, A2, A3, . . . ∈ F then also
⋂∞
i=1Ai = {x ∈ Ω: ∀i ∈ N x ∈ Ai} ∈ F .

Proposition B.2.2 can be easily shown using properties a), b) and c) of the definition of

a σ-algebra.

Now, as in the previous section, a probability can be defined to be a map defined on a

σ-algebra.

Definition: Assume F is a σ-algebra on the set Ω, a measure on F is a map

µ : F → R ∪ {∞}

with the following properties.

a) µ(∅) = 0

b) 0 ≤ µ(A) for all A ∈ F
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c) If A1, A2, A3, . . . are pairwise disjoint (meaning Ai ∩ Aj = ∅ if i 6= j) then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai)

A measure is called finite if µ(Ω) < ∞ (and thus µ(A) < ∞ for all A ∈ F). It is called

σ-finite if there is a sequence (An) ⊂ F , with µ(An) <∞ and
⋃∞
n=1 An = Ω.

A probability on F is a measure P on F for which P(Ω) = 1. If P is a probability on F

which is a σ-algebra on Ω then the triple (Ω,F ,P) is called probability space.

The above introduced condition (c) is called σ-additivity, it implies the following conti-

nuity properties.

Proposition B.2.3 (Continuity from above and below).

Let µ be a measure on a measurable space (Ω,F).

1) If A1 ⊂ A2 ⊂ A3 ⊂ . . ., Ai ∈ F , i = 1, 2, . . ., then

lim
n→∞

P(Ai) = P(
∞⋃
i=1

Ai).

2) If A1 ⊃ A2 ⊃ A3 ⊃ . . ., Ai ∈ F , i = 1, 2, . . ., and µ(Ai) <∞ then

lim
n→∞

P(Ai) = P(
∞⋂
i=1

Ai).

Often one has a non negative map defined on a certain subset E of all subsets of Ω and

asks whether this map can be extended to a measure on σ(E). The Extension Theorem of

Caratheodory gives a satisfying answer to this question. Instead of recalling this Theorem

let us only state the two important situation which are of interest to us.
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Proposition B.2.4 .

1) There is a unique measure λ on BR so that λ([a, b]) = b−a, for all intervals [a, b] ⊂ R.

This measure is called the Lebesgues measure on R.

2) For i = 1, 2 . . . n let µi be a σ-finite measure (respectively probability) on Fi, where Fi
is a σ-algebra on a set Ωi. Then there is a unique measure µ (respectively probability)

on ⊗ni=1Fi so that for all choices of A1 ∈ F1, A2 ∈ F2...An ∈ Fn

µ(A1 × A2 . . . An) =
n∏
i=1

µi(Ai), [with ∞ · 0 = 0].

This measure is called the product of (µi) and denoted by ⊗ni=1µi.

If one is interested in showing that two measures on (Ω,F) are equal the following

general principle gives an answer. It implies the statements on the uniqueness in above

Proposition B.2.4.

Theorem B.2.5 . Assume µ and ν are two σ-finite measures on (Ω,F), F being a σ-

algebra on the set Ω. Assume That D ⊂ F generates F and is stable taking intersections

(A,B ∈ D ⇒ A ∩B ∈ D) then

µ = ν ⇐⇒ µ(A) = ν(A) for all A ∈ D.

Mostly we are not interested in the outcome ω ∈ Ω itself but in some number assigned

to it.

Definition: Let (Ω,F ,P) be a probability space a map

X : Ω→ R, ω 7→ X(ω)

is called a random variable if it is measurable, meaning that the preimage X−1(A) = {ω ∈

Ω | X(ω) ∈ A} ∈ F of any set A ∈ B(R) lies in F .
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More generally, if F : Ω→ Ω̃ is a map and F and F̃ are σ-algebras on Ω respectively on

Ω̃, then F is called (F , F̃)-measurable if F−1(A) ∈ F whenever A ∈ F̃ .

Remark. If F : Ω→ Ω̃ and Ẽ ⊂ F̃ generates F , it is enough to require that F−1(Ẽ) ∈ F

for all Ẽ ∈ Ẽ to deduce that F is measurable. Indeed, we only need to observe that the

system {A ⊂ Ω̃ : F−1(A) ∈ F} is a σ-algebra on Ω which contains Ẽ , and thus must contain

σ(Ẽ).

This shows for example that X : Ω → R is a random variable if and only if {X ≤ a} =

{ω ∈ Ω : X(ω) ≤ a} is in F for all a ∈ R.

Proposition B.2.6 . If X and Y are random variables, g : R → R is measurable and

if a ∈ R, then X + Y, aX,XY, g ◦X are also random variables.

Assume (Xn)n∈N is a sequence of random variables for which X(ω) = limn→∞Xn(ω)

whenever ω ∈ Ω. Then X is also a random variable.

Given a probability P on (Ω,F) and a random variable X, we define the distribution of

X to be a probability on R: For A ∈ B(R)

(19) PX(A) = P(X−1(A)).

For example: PX([a, b]) = P(X−1([a, b])) = P(a ≤ X ≤ b).

There are two important special cases.

Example. (The finite case). Assume the random variable X : Ω → R only assumes the

values α1, α2, . . . , αn (distinct). If we let for i = 1, 2, . . . , n

Ai = X−1({αi}) = {ω ∈ Ω | X(ω) = αi}.

Note that the Ai’s are disjoint and A1∪A2∪. . . An = Ω. We can write X(ω) =
∑n

i=1 αi1Ai(ω).

Recall that 1A is the indicator function on A ⊂ Ω (1A(ω) = 1 if ω ∈ A, and 1A(ω) = 0 if

ω 6∈ A. In this case PX can be seen as a probability on ΩX = {α1, . . . , αn} with pi =

PX({αn}) = P(Ai) and for E ⊂ {α1, . . . , αn}

PX(E) =
∑
αi∈E

pi.
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Example. (Continuous case). Assume there is an integrable function f : R→ R so that for

any A ∈ B(R)

PX(A) =

∫
A

f(x)dx.

In this case we f is called the density of PX .

Note: Since PX is a probability a density f has the following two properties

1) f ≥ 0, and

2)
∞∫
−∞

f(x)dx = PX(R) = 1

Examples. (Of densities)

1) f(x) = 1
b−a1[a,b] density of the uniform distribution on the interval [a, b] ,

2) f(x) = 1√
2π
e−x

2/2 density of the standard normal distribution.

More generally, for µ ∈ R and σ > 0

(20) f(µ,σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

is the density of the normal distributed random variable whith mean µ and variance

σ2. We denote the normal distribution with mean µ and variance σ2 by N(µ, σ2), i.e.

(21) N(µ, σ2)(A) =
1√

2πσ2

∫
A

e−
(x−µ)2

2σ2 dx wheneverA ∈ BR

We now turn to a central notion : The expected value of a random variable.

Definition: (Expected value of random variables). Let X be a random variable on (Ω,F ,P)

a) If X only assumes finitely many values, say X =
∑n

i=1 αi1Ai then EP(X) =
n∑
i=1

αiP(Ai).

Remark. In order to see that EP(X) is well defined for random variables which assume

finitely many values we have to verify that if we write X in two different ways, say

(22) X =
n∑
i=1

αi1Ai and X =
m∑
i=1

βi1Bi ,
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then
n∑
i=1

αiP(Ai) =
m∑
i=1

βiP(Bi).

b) If X is a positive random variable, then

(23) EP(X) = sup{EP(Y ) | Y has finitely many values and 0 ≤ Y ≤ X}.

c) If X is arbitrary and EP(|X|) < ∞ (we call X in that case integrable), let X+ =

max(0, X) and X− = max(0,−X). Note that X+, X− ≥ 0, and X = X+ − X−. In

that case we define:

(24) EP(X) = EP(X+)− EP(X−).

Remark. The above introduction of expected values for random variables on probability

spaces, can be generalized to measures in exactly the same way. But in this case we speak

of the integral of a measurable function f : Ω→ R with respect to the measure µ and denote

it by
∫

Ω
f(ω)dµ(ω).

Definition: Assume that E(X2) <∞ , then the variance of X is defined by

Var(X) = EP((X − EP(X))2).

Proposition B.2.7 (Linearity of EP(·)).

For two integrable random variables X and Y the following identity holds.

EP(αX + βY ) = αEP(X) + βEP(Y ).

Proposition B.2.8 (Monotonicity of EP(·)).

For two integrable random variables X and Y , with X ≤ Y it follows that

EP(X) ≤ EP(Y ).
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Proposition B.2.9 . Assume the distribution of the random variable X has density

f : R → R. Then EP(X) =
∞∫
−∞

xf(x)dx as long as this integral exist (meaning that

∞∫
−∞
| x|f(x)dx <∞).

More generally, if g : R→ R is measurable, then EP(g ◦X) =
∫
g(x)f(x)dx, if this integral

exists.

The next two theorems give an answer to the following question: if Xn is a sequence

of random variables which converges to a random variable X. Under which condition does

also the expected values of Xn converge to the expected value of X. In general (meaning

without further conditions) EP(Xn) does not need to converge to EP(X) as the following

easy example shows.

Take Ω = [0, 1] with the σ-algebra B[0,1], and let P be the uniform distribution on [0, 1].

Then Xn = n21(0,1/n) converges pointwise to 0 but EP(Xn) = n→∞.

We say a sequence (Xn) of random variables on a probability space (Ω,F ,P) is almost

surely increasing, decreasing, or convergent if there is a measurable Ω̃ ⊂ Ω with P(Ω̃) = 1 so

that (Xn(ω)) has this property for all ω ∈ Ω̃.

Theorem B.2.10 (Monotone Convergence Theorem).

Assume that Xn is an almost surely increasing sequence of integrable random variables on

(Ω,F ,P). Let X(ω) = limn→∞Xn(ω) for ω ∈ Ω (might assume the value ∞).

Then

EP(X) = lim
n→∞

EP(Xn).
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Theorem B.2.11 (Majorized Convergence Theorem).

Assume that the sequence Xn of random variables on (Ω,F ,P) is almost surely converging

to a random variable X. Furthermore assume that there is an integrable random variable

Y so that |Xn| ≤ Y almost surely.

Then

EP(X) = lim
n→∞

EP(Xn).

Often it is not enough to know the distribution of a single random variable but one also

needs to know how several random variables are “related to each other”. For that we need

the “joint distribution”.

Definition: Assume X1, X2, . . . , Xn are random variables on
(

Ω,F ,P
)

. The joint distribu-

tion PX1,...,Xn of X1, . . . , Xn is a probability on B(Rn) defined by

P(X1,...,Xn)(A) = P({ω ∈ Ω | (X1(ω), X2(ω), . . . , Xn(ω)) ∈ A}) for A ∈ B(Rn).

We say that the joint distribution has a density f if f : Rn → R+
0 is measurable and

P(X1,...,Xn)(A) =

∫
· · ·
∫

A

f(x1, x2, . . . , xn)dx1dx2 . . . dxn for all A ∈ B(Rn).

Proposition B.2.12 . If f is the density of the joint distribution of the random variables

X1, X2 . . . , Xn, then the distribution of each random variable has a density. Indeed, for

i = 1, 2, . . . , n, define fi by

fi(x) =

∞∫
−∞

. . .

∞∫
−∞︸ ︷︷ ︸

n−1 times

f(x1, x2, . . . , xi−1, x, xi+1 . . . xn)dx1 . . . dxi−1dxi+1, . . . , dxn

(i.e. one integrates out all variables of f(x1, . . . , xn) but xi) then fi is the density of the

distribution of Xi.
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One of the most important concepts in probability theory is the notion of independence.

Definition. Let (Ω,F ,P) be a probability space and let F1,F2, . . . ,Fn be sub σ-algebras of

F . We say that (Fi) are independent, if for any choice of Ai, with Ai ∈ Fi, for i = 1, 2, . . . n,

it follows that

(25) P
( n⋂
i=1

Ai

)
=

n∏
i=1

P(Ai).

Assume X1, X2, . . . , Xn are random variables on
(

Ω,F ,P
)

. They are called independent if

the σ-algebras Fi, with Fi = {X−1
i (A) : A ∈ B(R)}, for i = 1, . . . n, are independent. This

means that for any choice of B1, B2, . . . Bn ∈ BR it follows that

(26) P({X1 ∈ B1, X2 ∈ B2, . . . Xn ∈ Bn}) =
n∏
i=1

P({Xn ∈ Bn}).

Proposition B.2.13 . For random variables X1, X2, . . . , Xn on (Ω,F ,P), the following

properties are equivalent

a) X1, . . . , Xn are independent.

b) The joint distribution PX1,...,Xn is the equal to the product (in the sense of probabili-

ties) of the single distributions PX1 ,PX2 , . . .PXn.

c) For any bounded measurable functions g1, g2, . . . , gn : R→ R

EP(g1(X1) · g2(X2) . . . gn(Xn)) = EP(g1(X1)) · EP(g2(X2)) . . .EP(gn(Xn)).

Under the additional hypothesis that PX1,...,Xn has a density (a)-(c) are equivalent to:

d) The density of PX1,...,Xn is the product of the densities of the PXi’s.
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Proposition B.2.14 . Assume X and Y are two square integrable random variables on

(Ω,F ,P) (i.e. EP(X2) <∞).

Then XY is integrable and if X and Y are independent then EP(XY ) = EP(X)EP(Y ).

¿From this fact one can conclude that if X1, X2, . . . Xn are independent and square

integrable then

Var(
n∑
i=1

Xi) =
n∑
i=1

Var(Xi).

Finally we want to state two crucial theorems, the first one formalizes the following well

known fact:

If one repeats a stochastic experiment often enough independently, and takes the

average of the outcomes (more precisely: of a measurement of the outcomes), then

the average of the outcomes is close (the more trials, the closer) to the expected

value.

Theorem B.2.15 (The Law of Large Numbers).

Assume that (Xi) is a sequence of independent integrable random variables all of them

having the same distribution.

Then almost surely

lim
n→∞

1

n

n∑
i=1

Xi(ω) = EP(X1).

The next theorem says how fast the convergence in the previous theorem is occurring.

Secondly it formalizes the following principle:

If a random variable X is the sum of “a lot of” independent random variables all
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of which have expected value zero and all of which have a variance of the same

magnitude. Then the distribution of X in close to a normal distribution.

Theorem B.2.16 (Central Limit Theorem).

Assume X1, X2, . . . are independent, EP(Xi) = 0 for i = 1, 2, . . . and there are numbers

0 < r < R so that

r < Var(Xi) < R all i = 1, 2 . . .

denote σ2
i = Var(Xi).

Then

lim
n→∞

P




n∑
i=1

Xi(
n∑
i=1

σ2
i

)1/2
∈ [a, b]


 =

1√
2π

b∫
a

e−x
2/2 dx = N(0, 1)[a, b].

Finally a more quantitative version of the Central Limit Theorem due to Berry and Es-

seen.

Theorem B.2.17 (Berry-Esseen).

Assume ∈ N and X1, X2, . . . , Xn are independent square integrable random variables having

mean 0. Let σ2
i = Var(Xi), for i = 1, . . . , n.

Then for all a < b

∣∣∣∣∣P
(

n∑
i=1

Xi ∈ [a, b]

)
−N

(
0,

n∑
i=1

σ2
i

)
([a, b])

∣∣∣∣∣ ≤ 12

(
∑n

i=1 σ
2
i )

3

n∑
i=1

EP(|Xi|3).
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B.3 Conditional Expectations

Definition: Assume that X is a random variable on a probability space (Ω,F ,P) with

EP(|X|) <∞.

Now let F̃ be a sub-σ-algebra of F , i.e. a σ-algebra which is contained in F .

Then X̃ : Ω→ R is called conditional expectation of X with respect to F̃ if

1) X̃ is F̃ -measurable, and EP(|X̃|) <∞

2) For any Ã ∈ F̃

EP(1ÃX̃) = EP(1ÃX).

Using a theorem of Real Analysis, the Radon Nikodym Theorem, we always can insure the

existence of conditional expectations and show that it is unique up to almost sure equality.

Theorem B.3.1 (The Radon Nikodym Theorem).

Assume that µ and ν are two measures on F , a σ-algebra on the set Ω and assume that ν

is σ-finite.

The two following statements are equivalent:

1) For every A ∈ F it follows that:

µ(A) = 0⇒ ν(A) = 0

(we say that ν is absolute continuous with respect to µ).

2) There is an F-measurable function f : Ω→ [0,∞) so that:

ν(A) =

∫
A

f(ω)dµ(ω), for all A ∈ F

(we say that the Radon Nikodym derivative of ν with respect to ν is f).
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Theorem B.3.2 (Existence and uniqeness of conditional expectations).

If X is a random variable on (Ω,F ,P), with E(|X|) <∞, and F̃ ⊂ F is a sub-σ-algebra,

then there exists a F̃-measurable random variable X̃ with

(27) EP(1AX̃) = EP(1AX) for all A ∈ F̃ .

This variable is unique up to almost sure equality, i.e. if X̃1 and X̃2 are F̃-measurable

random variables both satisfying equation (27) then X1 = X2.

We denote X̃ by EP(X|F̃).

Proof.

First assume that X ≥ 0. Define ν(A) = EP(1AX), for A ∈ F .

Now ν is a measure on F which is absolute continuous to P. Also the restriction of

µ to the sub-σ-algebra F̃ is absolute continuous with respect to the restriction of P to F̃ .

Therefore we can apply the Theorem of Radon Nikodym to both restrictions and obtain an

F̃ -measurable random variable X̃ ≥ 0 so that for all Ã ∈ F̃ :

EP(1ÃX̃) = ν(Ã) = EP(1ÃX).

Note that this implies that EP(X̃) = EP(X) <∞

In the general case we write X = X+−X−, and obtain by above argument F -measurable

and integrable random variables X̃+ and X̃− so that for X̃ = X̃+ − X̃−

EP(1ÃX̃) = EP(1ÃX̃
+)− EP(1ÃX̃

−) = EP(1ÃX
+)− EP(1ÃX

−) = EP(1ÃX).

To show uniqueness of X̃ assume that X̃1 and X̃2 are F -measurable and satisfy (27). For

ε > 0 the set A = {X̃1 ≥ X̃2 + ε} is F -measurable and it follows that

0 = EP(1A(X̃1 − X̃2)) ≥ εP(A).

This implies that P(A) = 0, and since ε > 0 can be chosen arbitrarily small we deduce from

Proposition B.2.3 that P(X̃1 > X̃2) = 0. Exchanging the roles of X̃1 and X̃2 we also deduce

that P(X̃2 > X̃1) = 0. �.
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We start with some general properties of conditional expectations.

Proposition B.3.3 . Let X and Y be two random variables on (Ω,F ,P) with

EP(|X|),EP(|Y |) <∞. Let F̃ ⊂ F be a sub-σ-algebra. Then

1) For a, b ∈ R: EP(aX + bY |F̃) = aEP(X|F̃) + bEP(Y |F̃) a.s..

2) If furthermore EP(|XY |) <∞ and if Y is F̃-measurable then

EP(Y X|F̃) = Y EP(X|F̃) a.s.

3) If X and F̃ are independent then EP(X|F̃) = EP(X) a.s..

4) If X ≤ Y almost surely then

EP(X|F̃) ≤ EP(X|F̃).

Proof.

The first assertion (1) can be shown by simply verifying that aEP(X|F̃) + bEP(Y |F̃)

satisfies equation ( 27) for the random variable aX + bY . Also if X and F̃ are independent

one needs to verify that the constant random variable EP(X) satisfies equation (27). This

shows claim (3)

In order show (2) we first assume that Y = 1B for some B̃ ∈ F̃ and observe that for any

Ã ∈ F̃

EP
(
1Ã1B̃EP(X|F̃)

)
= EP

(
1Ã∩B̃EP(X|F̃)

)
= EP(1Ã∩B̃X) = EP(1Ã1B̃X).

This proves the claim in that case and by assertion (1) the claim follows for all random

variables of the form Y =
∑m

i=1 βi1Bi , Bi ∈ F and βiR, for n ∈ N, i = 1, 2, . . . n.

For general Y we can find a sequence Yn of F̃ -measurable random variables so that each

Yn has only finitely many values, |Yn| ≤ |Y |, for n ∈ N and limn→∞ Yn = Y almost surely.
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For Ã ∈ F it follows by the Majorized Convergence Theorem B.2.11 that

EP
(
1ÃY EP(X|F̃)

)
= lim

n→∞
EP
(
1ÃYnEP(X|F̃)

)
= lim

n→∞
EP(1ÃYnX) = EP(1ÃY X)

which proves the claim (2).

In order to prove claim (4) assume that X ≤ Y almost surely and define

A = {ω ∈ Ω : EP(X|F̃) > EP(Y |F̃)}.

A is F̃ -measurable and

0 ≤ EP(1A(Y −X)) = EP
(
1A[EP(Y |F̃)− EP(X|F̃)]

)
≤ 0,

which implies P(A) = 0 and finishes the proof of claim (3). �

Unfortunately Theorem B.3.2 is one of those theorems asserting unique existence of a

certain object without giving a hint how to find it. We will describe the computation of

conditional expectation in two important situations.

Proposition B.3.4 . Assume that X is a random variable on (Ω,F ,P) with EP(|X|) <

∞. Assume that the sub-σ algebra F̃ is generated by the sets A1, A2, . . . An ∈ F , which

are mutually disjoint and whose union is all of Ω. Furthermore we assume that all of the

Ai’s have strictly positive probability.

Then

EP(X|F̃) =
n∑
i=1

1Ai
EP(1AiX)

P(Ai)
.

We now turn to a case important for stochastic processes Ω = Rn, F = BRn ,

Let P be a probability on BRn .

We define the following sub-σ-algebras F0,F1,F2, . . . ,Fn.

F0 = {∅,Ω} [the “trivial σ-algebra”]

F1 = all sets of the form A× BRn−1 , A ∈ BR

F2 = all sets of the form A× Rn−2, with A ∈ BR2
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in general:

Fj = all sets of the form A× Rn−j, with A ∈ BRj .

Proposition B.3.5 . Assume F : Rn → R is Fj-measurable. Then F only depends on

(x1, . . . , xj) (i.e. F is a function of (x1, . . . , xj)).

Proof. For j = 1 (other cases similar). Assume F being F1-measurabel and define

g : Rn → R by g(x1, . . . , xn) = g(x1) = F (x1, 0, . . . , 0). We need that

{(x1, . . . , xn) ∈ Rn | 0 6= F (x1, . . . , xn)− g(x1)} = ∅.

Since F and g are both F1-measurable also F − g is F1-measurable, thus there is an A ∈ BR

with

A× Rn−1 = {(x1, . . . , xn) ∈ Rn | 0 6= F (x1, . . . , xn)− g(x1)}.

Assume A 6= ∅ and pick x1 ∈ A. For this x1 it follows that F (x1, x2, . . . , xn) 6= F (x1, 0, . . . , 0)

for all (x2, . . . , xn) ∈ Rn−1 in particular for x2 = x3 = x4 = · · · = xn = 0. Thus

F (x1, 0, 0, . . . , 0) 6= g(x1), which is a contradiction. Now sinceA = ∅ alsoA×Rn−1 = ∅. �

Proposition B.3.6 . Assume X : Rn → R is a random variable and P is a probability

with density f : Rn → R.

Then EP

(
X|Fj

)
is a function in x1, . . . , xj (by Proposition B.3.5) and

EP(X|Fj)(x1, . . . , xj)

=

∫
·· ·
∫
f(x1, . . . , xj, zj+1, . . . , zn)X(x1, . . . , xj, zj+1, . . . , zn)dzj+1 . . . dzn∫

·· ·
∫
f(x1, . . . , xj, zj+1, . . . , zn)dzj+1 . . . dzn

a.s.

[Note: the denominator could be equal to zero, but then the numerator must also vanish,

in this case we define this fraction to be 0.]
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Proof. We will not prove that the function

X̃ : (x1, . . . , xj) 7→
∫
·· ·
∫
f(x1, . . . , xj, zj+1, . . . , zn)X(x1, . . . , xj, zj+1, . . . , zn)dzj+1 . . . dzn∫

·· ·
∫
f(x1, . . . , xj, zj+1, . . . , zn)dzj+1 . . . zn

is almost surely well defined and Fj-measurable. Let A×Rn−j ∈ Fj, i.e. A ∈ BRj . We need

to show that

EP(1A×Rn−jX̃) = E(1A×Rn−jX).

EP(1A×Rn−j ·X) =

∫
. . .

∫
1A(x1, . . . , xj)X(x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn

[Note: 1A×Rn−j(x1, . . . , xn) = 1A(x1, . . . , xj)]

=

∫
· · ·
∫

︸ ︷︷ ︸
j-times

1A(x1, . . . , xj)

·

 ∫ · · · ∫
(n−j)-times

X(x1, . . . , xn)f(x1, . . . , xn)dxj+1 . . . dxn

 dx1 . . . dxj

=

∫
· · ·
∫

1A(x1, . . . , xj)

[∫
·· ·
∫
X(x1, . . . , xn)f(x1, . . . , xn)dxj+1 . . . dxn

]∫
·· ·
∫
f(x1, . . . , xn)dxj+1 . . . dxn[∫

· · ·
∫
f(x1, . . . , xn)dxj+1 . . . dxn

]
dx1 . . . dxj

=

∫
· · ·
∫

1A(x1, . . . , xj)X̃(x1, . . . , xj)[∫
· · ·
∫
f(x1, . . . , xn)dxj+1 . . . dxn

]
dx1 . . . dxj

=

∫
· · ·
∫

n-times

1A(x1, . . . , xj)X̃(x1, . . . , xj)f(x1, x2, . . . , xn)dx1dx2 . . . dxn

change of order of integration

= EP(1A×Rn−jX̃(x1, . . . , xj)).
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Thus we showed

EP (X|Fj) = X̃ a.s. �

The following result is a usefull inequality for conditional expectations.

Theorem B.3.7 (Jensen’s inequality).

Let X be an integrable random variable on a probability space (Ω,F ,P) and let F̃ ⊂ F

be a sub σ-algebra. Secondly, let ϕ : R → R be a convex function for which ϕ(X) is also

P-integrable. Then it follows that

(28) E(ϕ(X)|F̃) ≥ ϕ(E(X|F̃)).

Proof. Define for x0 ∈ R

D−ϕ(x0) = lim
h↘0

ϕ(x0)− ϕ(x0 − h)

h

(if ϕ is differentiable in x0 then D−ϕ(x0) is simply the derivative). Now for x0 ∈ R the

straight line:

y − ϕ(x0)

x− x0

= D−ϕ(x0), or

y = xD−ϕ(x0)− x0D
−ϕ(x0) + ϕ(x0)

is a tangent to the graph of ϕ at (x0, ϕ(x0)). One of the equivalent conditions for convexity

of ϕ is the condition that the graph of ϕ is above every tangent line.

Thus for any x, x0 ∈ R it follows that ϕ(x) ≥ xD−ϕ(x0)− x0D
−ϕ(x0) + ϕ(x0).

Applying this inequality to the random variable X (replacing x) and the random variable

X0 = E(X|F̃) (replacing x0) it follows that

ϕ(X) ≥ XD−ϕ(X0)−X0D
−ϕ(X0) + ϕ(X0).

Taking now E(·|F̃) on both sides we deduce

E(ϕ(X) | F̃) ≥ E(XD−ϕ(X0)−X0D
−ϕ(X0) + ϕ(X0) | F̃)

= E(X|F̃)D−ϕ(X0)−X0D
−ϕ(X0) + ϕ(X0) = ϕ(E(X|F̃)).
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B.4 Distances and Convergence of Random Variables

We already introduced one notion of convergence for a sequence of random variables. Recall

that a sequence of random variables (Xn) on a probability space (Ω,F ,P) is converging to

the random variable X almost surely if

P({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)} = 1.

In this section we will introduce two other notions of convergence. We call L0(P) the set

of all measurable functions Ω→ R. We will identify two elements in L0(P) if they are almost

surely equal. Note that L0(P) is a vectorspace.

Defintion. A sequence (Xn) ⊂ L0(P) is said to converge in probability to X ∈ L0(P) if

(29) For all ε > 0 lim
n→∞

P({ω ∈ Ω : |Xn(ω)−X(ω)| > ε}) = 0.

The following two estimations relate P(|X| > a) to expected values.

Proposition B.4.1 . Assume X is positive a random variables and φ : R+
0 → R+

0 a

positive, increasing and measurable. For a > 0 it follows that

aP(φ(X) ≥ a) ≤ EP(φ(X)).

Applying this inequality to φ(x) = x and to φ(x) = x2, and to the random variable |X|

implies that

1) (Markov’s inequality) P(|X| ≥ a) ≤ 1
a
EP(|X|).

2) (Tschebyscheff’s inequality) P(|X| ≥ a) = P(X2 ≥ a2) ≤ 1
a2EP(|X|2).

Proof. Note that a1{φ(X)≥a} ≤ φ(X) and integrate both sides. �
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Proposition B.4.2 . For X, Y ∈L0(P) define

dL0(X, Y ) = EP
(
min(1, |X − Y |)

)
.

Then d(·, ·) is a metric on L0(P), which means that dL0(·, ·) ≥ 0 and

1) dL0(X, Y ) = 0 ⇐⇒ X = Y almost surely, whenever X, Y ∈L0(P)

2) dL0(X,Z) ≤ dL0(X, Y ) + dL0(Y, Z), whenever X, Y, Z ∈L0(P).

Moreover (Xn) ⊂L0(P) converges in probability to X ∈L0(P) if and only if

limn→∞ dL(Xn, X) = 0.

Proof. Note that for X, Y ∈L0(P): P(X = Y ) = 1 ⇐⇒ min(1, |X − Y |) = 0

a.s. which implies (1). Secondly, it follows for numbers x, y and z that min(1, |x − z|) ≤

min(1, |x− y|+ |y − z|) ≤ min(1, |x− y|) + min(1, |y − z|) which implies claim (2).

Finally note that for X, Y ∈L0(P) and 1 > ε > 0 it follows from Proposition B.4.1 that

P(|X − Y | > ε) = P(min(1, |X − Y |) > ε) ≤ 1

ε
EP(min(1, |X − Y |)) ≤ 1

ε
P(|X − Y | > ε).

This implies that

lim
n→∞

P(|X −Xn| > ε) = 0 ⇐⇒ lim
n→∞

EP(min(1, |X −Xn|)) = 0,

which proves the last assertion. �

To state the next result we will need the following notion: (Xn) ⊂ L0(P) is called a

Cauchy sequence with respect to the convergence in probability if for all ε > 0 there is an

N ∈ N so that P(|Xn − Xm| > ε) < ε whenever n,m ≥ N . Equivalently this means that

(Xn) is a Cauchy sequence with respect to dL0(·, ·): for all ε > 0 there is an N ∈ N so that

dL0(Xn, Xm) < ε, whenever n,m ≥ N .

It is clear that sequences which converge in probability are Cauchy. The following result

states the inverse.
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Proposition B.4.3 . The space L0(P) is complete with respect to the concergence in

probability. This means that every Cauchy sequence converges.

Proof. Assume that (Xn) is Cauchy. It is enough to show that there is a subsequence (Xnk)

which converges to some X ∈L0(P). Indeed, if (Xnk) converges to X then for

dL0(Xn, X) ≤ dL0(Xn, Xnk) + dL0(Xnk , X).

For given ε > 0 we can choose k0, so that the second summand is smaller than ε for all

k ≥ k0 and we can choose N ∈ N, N ≥ nk0 so that the first summand is smaller that ε for

all k ∈ N, with nk ≥ N , and all n ≥ N .

By the assumption we can choose a subsequence (Xnk) so that

P(|Xnk −Xm| > 2−k) < 2−k, for m ≥ nk.

We observe that for any k0

P({ω : Xnk(ω) does not converge}) = P({ω :
∞∑

k=k0

Xnk+1
(ω)−Xnk(ω) does not converge})

≤ P({ω :
∞∑

k=k0

|Xnk+1
(ω)−Xnk(ω)| =∞})

≤ P(
∞⋃

k=k0

{|Xnk+1
−Xnk | > 2−k})

≤
∞∑

k=k0

2k = 2k0+1

Since k0 can be chosen arbitrarily large we deduce that

P({ω : Xnk(ω) does not converge}) = 0

and define X(ω) = limk→∞Xnk(ω) if ω ∈ Ω̃ = {ω : Xnk(ω) converges} and X(ω) = 0 else.

It follows that Xnk converges almost surely to X and thus by the Majorized Convergence

Theorem B.2.11 it follows that

dL0(Xnk , X) = EP(min(1, |Xnk −X|))→ 0, for k →∞,
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which implies the claim by Proposition B.4.2. �

To introduce the second notion of convergence we let L2(P) be the vector space of all

square integrable random variables on (Ω, P ), i.e. X ∈ L2(P) ⇐⇒ EP(X2) <∞.

Definition. For X, Y ∈ L2(P) define < X, Y >= EP(XY ), the scalarproduct of X and Y .

Note: Since |X| · |Y | ≤ 1
2
[X2 +Y 2], it follows that XY is integrable as long as X and Y are

square integrable.

‖X‖L2 =< X,X >1/2=
√
EP(X2)

is called the L2-norm of X, and

If (Xn)∞n=1 ⊂ L2(P) is a sequence of random variables we say X ∈ L2(P) is the L2-limit

of (Xn) if

lim
n→∞

‖Xn, X‖L2 = lim
n→∞

√
EP((Xn −X)2) = 0

and we write

X = L2 − lim
n→∞

Xn.

Theorem B.4.4 (Cauchy-Schwartz inequalit). Assume X and Y are two random vari-

ables with finite L2-norm. Then

| < X, Y > | ≤ ‖X‖L2‖Y ‖L2 .

Proof. We first can assume that neither X nor Y are 0 almost surely, in that case both

sides of the inequality vanish. Therefore ‖X‖L2 > 0 and ‖Y ‖L2 > 0. Letting X̃ = X/|X‖L2

and Ỹ = Y/|Y ‖L2 we deduce for ω ∈ Ω from the binomial formula that |X̃Ỹ | ≤ 1
2
(X̃2 + Ỹ 2)

and integrating both sides we derive that

EP(|X̃Ỹ |) ≤ 1

2
EP(X̃2 + Ỹ 2) = 1.

Multiplying both sides by ‖X‖L2‖Y ‖L2 leads to the claim. �
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Theorem B.4.5 . ‖ · ‖L2 is a norm on L2(P), meaning the following.

1) For X ∈L2(P): ‖X‖L2 = 0 ⇐⇒ X = 0 almost surely.

2) (Homogeneity) For X ∈L2(P) and α ∈ R: ‖αX‖L2 = α‖X‖L2.

3) (Triangle inequality) For X, Y ∈L2(P): ‖X + Y ‖L2 ≤ ‖X‖L2 + ‖Y ‖L2 .

Proof. We will only show condition (3). Conditions (1) and (2) follow immediately.

For X, Y ∈ L2(P) apply the Cauchy-Schwartz inequality B.4.4 to |X| · |X + Y | and to

|Y | · |X + Y | in order to deduce that

EP(|X| · |X + Y |) ≤ ‖X‖L2‖X + Y ‖L2 and EP(|Y | · |X + Y |) ≤ ‖Y ‖L2‖X + Y ‖L2

Adding now both equation we deduce that

‖X + Y ‖2
L2

= EP((X + Y )2) ≤ EP((|X|+ |Y |)|X + Y |) ≤
[
‖X‖L2 + ‖Y ‖L2

]
‖X + Y ‖L2

which implies the assertion after cancellation. �

The following implications on the different notions of convergence are true.

Proposition B.4.6 .

If Xn ⊂L0 converges almost surely it converges in probability.

If Xn ⊂L0 converges in probability there is a subsequence which converges almost surely.

If Xn ⊂L2 converges in L2 then it converges in probability.

Proof. The first implication follows from the Majorized Convergence Theorem B.2.11 and

Proposition B.4.2 as it was already observed in the last part of the proof of Proposition B.4.3.

The second implication was also shown in the proof of B.4.2. The third implication follows

from the Inequality of Tschebyscheff (see Proposition B.4.1). �
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Theorem B.4.7 . The space L2(P) is complete with respect to ‖ · ‖L2.

Proof. Let (Xn) be a Cauchy sequence with respect to ‖ · ‖L2 . Using the same arguments

as in the proof of Proposition B.4.3 we only need to show that (Xn) has a convergent

subsequence. By the Inequality of Tschebyscheff (Proposition B.4.1) the sequence is Cauchy

with respect to the convergence in probability and thus convergent in probability to some

X ∈L0(P) by Proposition B.4.3. By Proposition B.4.6 we can first pass to a subsequence

which almost surely converges to X and to a further subsequence (Xnk) so that ‖Xnk+1
−

Xnk‖L2 < 2−k for all k ∈ N. By the Monoton Convergence Theorem B.2.10

EP(
∞∑
k=1

|Xnk+1
−Xnk |2) = lim

K→∞
EP(

K∑
k=1

|Xnk+1
−Xnk |2) <∞.

Letting now Y = |Xn1|+
∑∞

k=1 |Xnk+1
−Xnk | it follows that |Xnk | ≤ Y for all k ∈ N. By the

triangle inequality it also follows that

‖Y ‖L2 ≤ ‖Xn1‖L2 +
∞∑
k=1

‖Xnk+1
−Xnk‖L2 <∞.

Now it follows for k ∈ N from the Majorized Convergence Theorem B.2.11 that

‖X −Xnk‖L2 = E1/2
P ((X −Xnk)

2) = lim
m→∞

E1/2
P ((Xnm −Xnk)

2 ≤ 2−k+1,

which implies the claim �

The following observation is an immediate consequence of Jensen’s inequality (see The-

orem B.3.7 in Appendix B.3).

Proposition B.4.8 . The conditional expectation with respect to a sub-σ-algebra F̃ is

a contraction on L2(P), i.e. for X, Y ∈ L2(P) it follows that

‖EP(X − Y |F̃)‖L2 ≤ ‖X − Y ‖L2 .

In particular this implies that the conditional expectation is a continuous map on L2(P).



Bibliography

[AD] Arrow, K. und Debreu, G. Existence of an equilibrium for a competitive economy

[ADEH] Artzner, P., Delbaen, F., Eber, J.-M. und Heath, D. Coherent measures of Risk,

manuskript (1998)

[BP] Back, K. und Pliska, S. On the fundamental theorem of asset pricing with an infinite

state space J. Math. Econ. 20, 1-18 (1991)

[BR] Baxter, M. und Rennie, A. Financial calculus - an introduction to derivative pricing

Cambridge: Cambridge University Press (1996)

[Be] Beike, R. und K”ohler, A. Risk-Management mit Zinsderiveten - Studienbuch mit

Aufgaben, Oldenbourg Verl., M”unchen-Wien (1997)

[Bi] Biermann, B. Die Mathematik der Zinsinstrumente, Oldenbourg Verl., M”unchen-

Wien (1999)

[BlS] Black,F. und Scholes, M. The pricing of options and corporate liabilities J. Pol. Econ.

81, 637-654 (1973)

[DMW] Dalang, R. C., Morton, A., and Willinger, W., Equivalent martingale measures

and no-arbitrage in stochastic securities market models. Stochastics and stochastic

Rep.,29(1989),189–202.

[D1] Delbaen, F. (1992), Representing martingale measures when asset prices are continu-

ous and bounded., Math. Finance, 2, 107–130.

229



230 BIBLIOGRAPHY

[DS1] Delbaen, F. und Schachermayer, W. Arbitrage and free lunch with bounded risk for

unbounded continuous processes (1993)

[DS2] Delbaen, F. und Schachermayer, W., A general version of the fundamental theorem

of asset pricing Math. Ann. 300 463-520 (1994)

[DS3] Delbaen, F. und Schachermayer, W., The fundamental theorem of asset pricing for

unbounded processes, prepint.

[DS4] Delbaen, F. und Schachermayer, W., The variance-optimal martingale measure for

continuous processes, Bernoulli, 2(1), 81–105.

[FL1] F”ollmer, H. und Leukert, P. Quantile Hedging

[FS] F”ollmer,H. und Schweizer,M. Hedging of contingent claims under incomplete infor-

mation. in: Davis, M.H.A., Elliott, R.J. (eds.) applied stochastic analysis (Stochastic

Monogr., vol. 5, pp. 389-414) london, New York: Gordon and Breach

[HK] Harrison, M. und Kreps, D. Martingales and arbitrage in multiperiod security markets

J. Econ Theory 20 381-408 (1979)

[HP] Harrison, M. und Pliska, S. Martingales and stochastic integrals in the theory of

continuous trading Stochastic Processes Appl. 11 215-260 (1981)

[HKW] Howison, S.D., Kelly, F.P. und Wilmott, P. Mathematical models in finance Boca

Raton: Chapman Hall (1995)

[Ir] Irle, A. Finanzmathematik. Die Bewertung von Derivaten Teubner, Stuttgart (1998)

[K1] Karatzas, I. Lectures in mathematical finance Providence, American Mathematical

Society (1996)

[K2] Karatzas, I. Lectures in mathematics of finance CRM Monograph Series Vol. 8, Amer-

ican Mathematical Society, Providence (1997)



BIBLIOGRAPHY 231

[KS1] Karatzas,I. und Shreve, S.E. Brownian motion and stochastic calculus Berlin, Heidel-

berg, New York: Springer(1988)

[KS2] Karatzas, I. und Shreve, S.E. Methods of mathematical finance Berlin, Heidelberg,

New York: Springer(1998)

[Kr] Kreps,D. Arbitrage and equilibrium in economies with infinitely many commodities,

J. Math. Econ. 8, 15-35 (1981)

[KK] Korn, R. und Korn, E. Moderne Methoden der Finanzmathematik Vieweg (1999)

[LL1] Lamberton, D. und Lapeyre, B. Introduction to stachastic calculus applied to finance

Boca Raton: Chapman Hall (1996)

[Ma] Mandelbrot, B.B. Fractals and Scaling in Finance Springer, New York-Berlin (1997)

[Me] Merton, R. Theory of rational option pricing Bell Journal of Economics and Manage-

ment Science 4 141-183 (1973)

[MR] Musiela, M. und Rutkowski, M. Martingale methods in mathematical finance Springer,

Berlin Heidelberg New York (1997)

[P1] Pliska, S.R. Introduction to mathematical finance: Discrete Time Models Blackwell,

Oxford (1997).

[Ø] Øksendal, B. Stochastic Differential equation - an introduction with applications Grad-

uate Texts in Mathematics, Springer, Berlin Heidelberg (1992).

[RT] Rogers, L.C.G. und Talay, D. (eds.) Numerical Methods in Finance Cambridge: Cam-

bridge University Press (1997)

[Sch] Schweizer, M.,Mean variance hedging for general claims, Annals of Applied Probabil-

ities, 2,(19??) 171–179.



232 BIBLIOGRAPHY

[Sp] Spremann, K. Wirtschaft, Investment und Finanzierung, Oldenbourg Verl.,

M”unchen (1996).

[WHD] Wilmott, P., Howison, S. und Dewynne, J. The mathematics of financial derivatives

Cambridge: Cambridge University Press (1995).


