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Abstract: Epilepsy is a chronic disease and one of the most common neurological disorders worldwide.
Electroencephalogram (EEG) signals are widely used to detect epileptic seizures, which provide
specialists with essential information about the brain’s functioning. However, manual screening of
EEG signals is laborious, time-consuming, and subjective. The rapid detection of epilepsy seizures
is important to reduce the risk of seizure-related implications. The existing automatic machine
learning techniques based on deep learning techniques are characterized by automatic extraction and
selection of the features, leading to better performance and increasing the robustness of the systems.
These methods do not consider the multiscale nature of EEG signals, eventually resulting in poor
sensitivity. In addition, the complexity of deep models is relatively high, leading to overfitting issues.
To overcome these problems, we proposed an efficient and lightweight multiscale convolutional
neural network model (LMPSeizNet), which performs multiscale temporal and spatial analysis of
an EEG trial to learn discriminative features relevant to epileptic seizure detection. To evaluate the
proposed method, we employed 10-fold cross-validation and three evaluation metrics: accuracy,
sensitivity, and specificity. The method achieved an accuracy of 97.42%, a sensitivity of 99.33%, and
a specificity of 96.51% for inter-ictal and ictal classes outperforming the state-of-the-art methods.
The analysis of the features and the decision-making of the method shows that it learns the features
that clearly discriminate the two classes. It will serve as a useful tool for helping neurologists and
epilepsy patients.

Keywords: epileptic seizures detection; EEG signals; deep learning; CNN model; neurological disorders

MSC: 68T07

1. Introduction

Epilepsy is a chronic disease and one of the most common neurological disorders
around the world, and it is characterized by sudden recurrent seizures [1]. The human brain
consists of several neurons, and sometimes a severe disturbance of these neurons occurs,
causing a seizure [2]. The disturbance of neurons results from many different reasons such
as genetics or structural change in the brain and others. More than 60 million people in the
world have been affected by epileptic seizures of various kinds [3]. Epileptic seizures may
lead to temporary confusion, sudden loss of consciousness or awareness, uncontrollable
jerking and shaking, and so on [4], which can cause severe injury or loss of life resulting
from falls and accidents. In addition, it affects the patient’s psychological, occupational,
and social aspects. Therefore, rapid and accurate detection of epileptic seizures will help to
minimize financial and living costs, i.e., improving the patient’s quality of life [5].

There are different screening techniques to detect epileptic seizures, such as magnetic
resonance imaging (MRI) [6], electroencephalogram (EEG) [7], and magnetoencephalography
(MEG) [8]. The observation of brain activity signals using the EEG technique is the most
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common method for detecting epileptic seizures [9]. Recording and observing the electroen-
cephalogram (EEG) signal is one of the primary tools for detecting epileptic seizures [10]. It is
a technique that includes placing many electrodes on a patient’s scalp [11] to capture the elec-
trical activities of neurons as an EEG signal [12]. These complex biomedical one-dimensional
signals are difficult to visually observe [13] because of the difficulty of analyzing long-term
EEG recordings, especially if the observation is multichannel [10]. This necessitated the need
for automatic machine learning-based methods for epileptic seizures.

Recently, due to the marvelous achievements of deep learning, it has been employed
in designing methods for epileptic seizure detection [1–3]. Several studies have shown
that the CNN architecture is the most suitable for EEG signal representation learning
because it has the advantage of preserving the structural and configurational information
in the original data [4–6]. However, the way the CNN architecture has been used to
develop methods for the automatic screening of EEG signals has certain limitations and
needs further improvement. Most of the CNN architectures employed in recent studies
are composed of stacked convolutional layers, meaning the extracting features process
is performed sequentially [3,14]. Cimr et al. [14] introduced a lightweight CNN model
where eight learnable layers are stacked in sequential order. Though the model proposed
by Cimr et al. [14] is lightweight, it does not take into account the multiscale information
of EEG signals. Most of the sequential CNN models require a large number of training
samples because of the enormous number of learnable parameters [3,15], while annotated
epileptic seizures EEG data are limited [7]. It was shown by Ko et al. [16] that a multiscale
neural network (MSNN) extracts features at multiple frequency/time ranges, which better
reflect the multi-frequency properties in EEG signals. There are no significant studies that
leverage the multiscale nature of EEG signals. Most of the existing CNN architectures stack
convolutional layers so that the width of the network (the number of filters in convolutional
layers) increases with increasing depth; this drastically increases the number of learnable
parameters, leading to overfitting. Ihsan et al. [17] showed that the pyramid architecture
design, where a CNN model’s width decreases with increasing depth, significantly reduces
its complexity, avoiding overfitting problems when the available annotated data are limited.

Inspired by the superior performance of the multiscale neural network and the param-
eter reduction efficiency of pyramid architecture, we design a new lightweight multiscale
convolutional neural network, namely, LMPSeizNet, to detect the epileptic patient’s state,
whether he/she is in an inter-ictal or ictal state. LMPSeizNet blends the design idea of
encoding multiscale information similar to MSNN [16] and the concept of pyramid archi-
tecture to keep its architecture simple, efficient, and expressive to avoid overfitting and
enhance its generalization. The main contributions of this work are as follows:

• We proposed a lightweight multiscale CNN model, named LMPSeizNet, for epileptic
seizure detection. It is very efficient and expressive, i.e., it efficiently analyzes the
temporal (along the time dimension) and spatial (along the channel dimension) to
encode spectral information using temporal filters of various receptive fields to learn
the multiscale discriminative features from EEG signals relevant to epileptic seizure
detection. Moreover, as it is based on the pyramid architecture design, it is lightweight,
i.e., the number of learnable parameters is small, and a limited number of annotated
EEG trials is enough to train it to avoid overfitting.

• We implemented and thoroughly analyzed the performance of LMPSeizNet on bench-
mark datasets. The results and analysis indicate that it has comparable or better
performance than similar state-of-the-art methods while keeping its parameter com-
plexity low, enhancing its generalization despite limited annotated EEG trials.

The rest of this paper is organized as follows. Section 2 presents a review of the
state-of-the-art methods for epileptic seizure detection. Section 3 gives the details of the
proposed method. Section 4 describes the experimental setup and evaluation protocol.
Section 5 presents the details of the experiments conducted to validate the performance of
the proposed method. Section 6 demonstrates the results achieved, and Section 7 provides
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a discussion and a comparison with the state-of-the-art results. Finally, Section 8 provides
the conclusion.

2. Literature Review

Many researchers have addressed the problem of epilepsy detection using EEG brain
signals, and different methods have been proposed. These methods can be classified into
two main categories: hand engineering features-based and deep learning-based methods.
Different approaches have been used to extract hand-engineered features from EEG signals
for epilepsy detection [10,18–21]. Though these methods achieved satisfactory results, they
have some limitations; their time complexity is high [20], they are limited to certain small-
size datasets and do not generalize to the other datasets [18], and they require increasing
training time and memory usage to improve the accuracy of the models [22]. In contrast,
the deep learning approaches are more robust compared to hand-engineered feature-based
approaches and provide better classification performance. Consequently, we present below
an overview of the state of the art using hand engineering and deep learning-based methods
for epileptic seizure detection.

Some methods have been proposed based on the traditional machine learning ap-
proach, where hand-engineered feature extraction techniques are used to extract discrimi-
native information and classification methods for detection [23–25]. Rafiamma et al. [26]
developed an algorithm using hand engineering approaches for automatic epileptic seizure
detection. This method is based on discrete wavelet transform and the cluster-based near-
est neighbor algorithm. This method provides low classification performance between
seizure and normal EEG signals, and its complexity is high. Zarei [27] introduced a method
based on features extracted from EEG signals using discrete wavelet transform, orthogonal
matching pursuit, and entropy. Li et al. [25] used nonlinear mode decomposition and KNN
for their method of epileptic seizure detection. Zabihi et al. [24] proposed a method using
nonlinear dynamics and nullclines for patient-specific epileptic seizure detection.

Different deep learning-based approaches used for epileptic seizure detection are
1DCNN [12,28,29], 1DCNN and 2DCNN [30,31], CNN and LSTM [4,32], and others [33,34].
Wang et al. [12] developed a stacked one-dimensional convolutional neural network
(1DCNN) model and used the random selection and data augmentation (RS-DA) strat-
egy for training. Gupta et al. [28] introduced a model to maintain the true nature of EEG
signals by using 1DCNN to assist neurosurgeons in easily defining the affected part of
the brain. Jia et al. [29] introduced the variable weight convolutional neural networks
(VWCNNs) technique, which uses dynamic weights instead of static weights in the con-
volutional layers and fully connected layers to mitigate the limitations of generalization
ability and classification performance resulting from static weights.

Wang et al. [31] proposed a method based on 1DCNN and 2DCNN to detect seizures
from EEG signals. The complexity of the learnable parameters of this method is very
high, leading to overfittings. Xu et al. [4] introduced a 1D CNN-LSTM model for epileptic
detection. Firstly, EEG trials are preprocessed and normalized, and then features are
extracted using the CNN model. After that, temporal features are extracted by LSTM layers,
and the classification is performed. Liu et al. [32] introduced a novel deep CNN-LSTM
structure for detecting seizures and tumors and determining the status of the two eyes
(closed or open). The proposed method proved capable of detecting a seizure using a short
EEG signal segment (1 s).

Some methods used architectures like autoencoder [33] and generalized convolutional
prototype learning (GCPL) [34]. Shoka et al. [35] integrated a CNN model with autoen-
coders (A.E.s) to reduce wrong warnings during epileptic seizure detection. The authors
noticed that the classification performance of this method is similar to that of a CNN model
but with a decrease in the average false positive rate. Abdelhameed et al. [36] proposed
a new method based on the automatic feature learning capabilities of a two-dimensional
deep convolution autoencoder in addition to a neural network-based classifier. The study
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shows high performance in seizure classification; however, the proposed model has a very
high parameter complexity.

José et al. [37] introduced a new method for epileptic seizure classification based on
a deep belief network (DBN). The performance of this method is low compared to the
state-of-art methods. The reason is that the CNN- and RNN-based techniques outperform
perform the DBN-based methods. Mekruksavanich and Jitpattanakul [38] proposed a
deep model, ResNet-BiGRU-ECA, composed of three types of layers: convolutional layers,
BiGRU layers, and channel attention layers. The proposed method was evaluated on the
ESRD dataset using 5-fold cross-validation. Despite the good reported performance, the
model has high parameter complexity, which leads to overfitting. Cimr et al. [14] developed
a deep CNN model consisting of learnable layers; it performs well and has low parameter
complexity. However, the model does not take into account the multiscale information
of EGG signals. Abdulwahhab et al. [15] introduced a hybrid deep model consisting of
CNN and RNN blocks. The RNN block takes raw EEG signals as input. In parallel, the
signal is transformed into spectrogram and scalogram images and passed to the CNN
block. Though it shows good classification performance, it is very complex and has high
parameter complexity.

Some deep learning-based techniques first convert EEG signals to an image and use
highly complex CNN architectures. Lyu et al. [34] presented a method based on generalized
convolutional prototype learning (GCPL). The authors used VGG16 for feature evaluation
and GCPL for classification. It integrates a CNN model and prototype learning. GCPL
assigns EEG samples to the prototype’s nearby areas in the feature space. Notably, the
complexity of VGG16 is very high. Tripath et al. [39] proposed a new method that first
converts an EGG trial into 2D images using superset transform (SLT) to be passed to
VGG-19 for seizure classification. This method has a very high parameter complexity due
to converting EEG singles to 2D images and using VGG-19.

In general, deep learning-based methods show better performance compared to hand-
engineered features-based methods, and the dominant deep architecture is a CNN, which
has shown better performance. However, the designs of CNN architectures used in the
existing methods for the automatic screening of EEG signals for epileptic seizure detection
have certain limitations. Most CNN architectures stack convolutional layers and extract
features sequentially, ignoring the fact that features in an EEG signal exist at multiple
scales. In addition, these architectures have an enormous number of learnable parameters
requiring a huge amount of data for their training, while the annotated epileptic seizures
EEG data are limited.

3. Propped Method

In this section, we first present the problem specification and formulation, and then
we present the details of the proposed method for seizure detection LMPSeizNet.

3.1. Problem Formulation

The problem is to detect through an epoch of the EEG signal of an epileptic patient
whether he/she is in an inter-ictal or ictal state. In machine learning, this can be formulated
as a classification problem, where the given epoch of an EEG signal is classified into one of
two classes, i.e., inter-ictal or ictal, as shown in Figure 1.
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Figure 1. Seizure detection problem specification, where 1 and 2 are labels that stand for inter-ictal
and ictal classes. Here, x is an EEG signal epoch to be passed to a seizure detection method (H) for
its classification.

The EEG signal taken from an epileptic patient consists of two dimensions: spatial and
temporal. The spatial dimension represents different locations on the scalp, while the tem-
poral dimension represents the time points that determine the change in the EEG signal over
time. The EEG signal is segmented into epochs (instances) with a fixed temporal window.
Each epoch x consists of C channels and T time points; it is represented as a matrix:

x =


x1,1 x1,2 · · · x1,T
x2,1 x2,2 · · · x2,T

...
...

. . .
...

xC,1 xC,2 · · · xC,T

, i.e., x ∈ RC×T , (1)

In this matrix, the rows represent the spatial dimension, and the columns represent
the temporal dimension. It indicates that x belongs to the space of EEG epochs RC×T ,
i.e., x ∈ RC×T . Let Y = {1, 2} be the set of labels, where labels 1 and 2 represent inter-ictal
and ictal (seizure) classes, respectively. Formally, to predict the state of an epoch x as inter-
ictal, or ictal, we need to design a mapping that takes x as input and yields ŷ as output,
where ŷ ∈ Y is the predicted label of x. This means that we need to design the mapping
H(x, θ) : RC×T → Y so that H(x, θ) = ŷ, where θ represent the parameters of mapping H.
The main problem is to design H so that it can accurately detect the actual label of any input
epoch. Motivated by the outstanding performance of deep learning-based techniques [16],
we design H as a lightweight multiscale pyramid convolutional neural network model for
seizure detection (LMPSeizNet).

3.2. Lightweight Multiscale Pyramid Convolutional Neural Network (LMPSeizNet)

A close look at the EEG epoch shown in Figure 2 reveals that each channel is composed
of multiple scales/frequencies along the temporal dimension. This indicates that extracting
multiscale temporal features is the best approach to represent an EEG signal. Further, the
signal varies across channels along the spatial dimension at each time point, and the spatial
variations are correlated; this observation suggests extracting multiscale spatial patterns
along the spatial dimension. Motivated by these characteristics of EEG signals and the
deep multiscale neural network proposed by Ko et al. [16], we propose an end-to-end
lightweight multiscale pyramid convolutional neural network (LMPSeizNet) for modeling
H. LMPSeizNet extracts features at multiple frequencies/scales along temporal dimensions
and encodes the relationships among channels to reflect the multiscale properties of EEG
signals. It is composed of three mappings: the multiscale-temporal feature representation
(ϕ1), the spatial feature representation (ϕ2), and the classifier (ϕ3), as illustrated in Figure 3.
In view of this, the model H is composed of three mappings as follows:

H(x; θ) = ϕ1 ◦ ϕ2 ◦ ϕ3(x), (2)
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where θ represents the learnable parameters of ϕ1, ϕ2, and ϕ3. The details of each mapping
are described in the following subsections.
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Figure 3. The architecture of LMPSeizNet; it takes an EEG trial as input and processes it using
three main modules, defining the mappings of ϕ1, ϕ2, and ϕ3, and yields the predicted label ŷ. Where
(a) is the first temporal convolution block, (b) is temporal separable convolutional block, (c) is spatial
convolutional block, (d) is the classifier.
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3.2.1. The Multiscale Temporal Feature Representation

The mapping ϕ1 analyses the input EEG epoch x using multiple temporal filters and
extracts multiscale temporal features. For this purpose, one temporal convolution block and
three temporal depthwise separable convolution blocks are employed to extract multiscale
temporal features in sequence.

The first temporal convolution (TConvB) block uses K0 one-dimensional (1D) temporal
filters of size K0 = 1 × ( fs/2) × 1, where fs denotes the sampling rate; it extracts frequencies
of 4 Hz and above. It uses a leaky rectified linear unit (LReLU) activation function to
overcome ReLU’s vanishing gradient issues. It takes an EEG epoch x ∈ RC×T as input
and yields the activation F0 ∈ RC×T×K0 , a feature map consisting of K0 features of size
C × T, i.e., F0 =

[
f 1
0 , f 2

0 , . . . , f K0
0

]
, where f i

0 ∈ RC×T is a feature learned by the ith filter.
This block learns K0 different spectral features with frequencies 4 Hz and above from the
input EEG epoch.

The three-temporal depth-wise separable convolution (TDSepConvB) blocks extract
multiscale temporal features sequentially; the specification of a TDSepConvB block is
shown in Figure 3; it consists of six layers. Batch normalization layers are used to overcome
the vanishing gradient problem during backpropagation and to speed up the convergence
while training the network. The activation layers LReLU introduce the non-linearity in the
network and speed up the convergence, avoiding the gradient vanishing problem. Each
TDSepConvB block involves two main learnable layers: a depthwise convolution (DConv)
and a pointwise convolution (PConv). The DConv layer of the first TDSepConvB1 block
takes the output F0 =

[
f 1
0 , f 2

0 , . . . , f K0
0

]
of TConvB block as input and uses as many filters

as there are features in the input feature map F0, i.e., K0 1D filters of size k1
1 = 1 × T1,

which means that one independent filter is learned for each input feature to learn a more
expressive feature. It yields an activation F 1

1 =
[

g1
1, g2

1, . . . , gK0
1

]
. The DConv does not

take into account the interdependencies between features gi
0, i = 1, 2, . . ., K0; this is dealt

with by the PConv layer, which takes F 1
1 as input and uses pointwise convolution with

K1 1D filters of size k2
1 = 1 × 1 to generate a richer feature map F 2

1 =
[

f 1
1 , f 2

1 , . . . , f K1
1

]
∈

RC×T×K1 . Note that K1 < K0, which indicates that the PConv layer generates discriminative
features by reducing the dimension of the input space and avoiding the curse of the
dimensionality problem.

Similarly, the TDSepConvB2 and TDSepConvB3 blocks take F 2
1 ∈ RC×T×K1 and

F 2
2 ∈ RC×T×K2 as inputs, respectively, use Ki (i = 1, 2)1D filters of size k1

j = 1× Tj (j = 2, 3)
for DConv layers and Kj (j = 2, 3) filters of size k2

j = 1 × 1 for PConv layers, and give rise

to the feature maps F 2
2 ∈ RC×T×K2 and F 2

3 ∈ RC×T×K3 , respectively.
Note that we use the pyramid approach [17] to specify the numbers Kj (j = 1, 2, 3) in

TDSepConvB blocks such that K1 > K2 > K3, which helps to extract larger numbers of
low-level features and small numbers of higher-level discriminative features hierarchically.
An advantage of this approach is the significant reduction in the number of unnecessary
learnable parameters, which helps reduce the chances of overfitting because the available an-
notated data for training the network are limited. Additionally, the filter sizes k1

j (j = 1, 2, 3)
in TDSepConvB blocks are chosen such that T1 > T2 > T3; this choice helps to extract
multiscale discriminative features at different levels of the hierarchy. Empirically, we found
that the best values for these hyperparameters are K0 = 64, K1 = 32, K2 = 16, K3 = 8,
T1 = 32, T2 = 16, T3 = 8. The detailed specification of these blocks is shown in Table 1.
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Table 1. The specification of the architecture of LMPSeizNet, together with the parameter complexity
of each block. The stride for each of TConvB and TDSepConvB is set to 1.

Mapping Block Input Output Learnable
Parameters

ϕ1

TConvB
K0 = 64, T0 = ƒs/2 3 × 512 × 1 3 × 385 × 64 8256

TDSepConvB1
K1 = 32, T1 = 32 3 × 512 × 64 3 × 354 × 32 4192

TDSepConvB2
K2 = 16, T2 = 16 3 × 354 × 32 3 × 339 × 16 1072

TDSepConvB3
K3 = 8, T3 = 8 3 × 339 × 16 3 × 332 × 8 280

ϕ2

SConvB1
K4 = 32, k4 = [C, 1, K1] 3 × 354 × 32 1 × 1 × 32 3104

SConvB2
K5 = 16, k5 = [C, 1, K2] 3 × 339 × 16 1 × 1 × 16 784

SConvB3
K6 = 8, k5 = [C, 1, K3] 3 × 332 × 8 1 × 1 × 8 224

ϕ3
Concatenation

(1 × 1 × 32),
(1 × 1 × 16),
(1 × 1 × 8)

1 × 1 × 56

FCB 1 × 56 2 112

Total 18,024

The output of the mapping ϕ1 is [F 2
1 , F 2

2 , F 2
3 ], i.e.,[

F 2
1 , F 2

2 , F 2
3 ] = ϕ1(x; θ1), (3)

which is passed to the next module to extract the most discriminative features; here, θ1 are
the learnable parameters of ϕ1.

3.2.2. The Spatial Feature Representation

The mapping ϕ1 analyses the input EEG epoch x along the temporal dimension and
ignores the spatial relationships of the features. The mapping ϕ2 overcomes this limitation
and works out the spatial relationships between multiscale temporal features. It consists of
three spatial convolutional (SConvB) blocks, which take multiscale temporal feature maps
as input and yield multiscale spatial patterns.

Each SConvB consists of four layers, as shown in Figure 3. The SConvB1 block
takes F 2

1 ∈ RC×T×K1 as an input, processes it with the B.N. layer, activation LReLU,
spatial convolution (SConv) layer, and global average pooling (GAP) layer and extracts
the feature vector v1 ∈ R1×1×K4 . The SConv layer uses K4 1D spatial filters of sizes
k4 = C × 1 and learns feature maps of dimension 1 × T × K4, which is further reduced to
the dimension 1 × 1 × K4 with the GAP layer. Similarly, the feature maps F 2

2 ∈ RC×T×K2

and F 2
3 ∈ RC×T×K3 are passed to the SConvB2 and SConvB3 blocks, respectively, which

use K5 and K6 1D spatial filters of sizes k j+3 = C × 1, j = 2, 3, and learn the feature
vectors v2 ∈ R1×1×K5 and v3 ∈ R1×1×K6 , respectively. The multiscale temporo-spatial
features v1, v2, v3 are concatenated to generate a feature vector v ∈ R3K4 , which is passed
to the classification module. The above discussion indicates that the mapping ϕ2 takes
F 2

i ∈ RC×T×Ki , i = 1, 2, 3, and extract the feature vector v ∈ R3K4 , i.e.,

v = ϕ2
(
F 2

1 , F 2
2 , F 2

3 ; θ2

)
, (4)
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where θ2 are the learnable parameters of ϕ2. The outputs of TDSepConvB1 and TDSepConvB2
are passed directly to SConvB1 and SConvB2 through shortcut connections to generate multi-
scale features. These shortcuts make the flow of gradients easy during the backpropagation
and help to overcome the training difficulties due to the gradient vanishing problem.

3.2.3. The Classifier

The mappings ϕ1 and ϕ2 form the feature extractor, which analyzes the input EEG
epoch x and extracts multiscale temporo-spatial features v ∈ R3K4 . These features are
passed to the classifier ϕ3, which calculates the posterior probability of each class using an
F.C. layer and a softmax layer, i.e.,

p = ϕ3(v; θ3), (5)

where p is the vector of posterior probabilities and θ3 represents the weights and biases of
the F.C. layer. The most probable class, i.e., the class with the highest posterior probability,
is the predicted class of the input EEG epoch x. The model H(x; θ) is learned end-to-end so
that the loss is minimal, i.e.,

θ̂= min
θ

∑ l( H(x; θ), y), (6)

where l(., .) is the loss function, and H(x; θ) and y are the predicted and actual labels of x.
Here, θ represents the learnable parameters of ϕ1, ϕ2, and ϕ3, i.e., θ = {θ1, θ2, θ3}.

Please note that LMPSeizNet is lightweight; it involves only 18,024 learnable parame-
ters, whereas the MSNN model [16] involves a large number of trainable parameters, which
is 202,576. This means that LMPSeizNet can be trained using the limited annotated data
available, avoiding overfitting issues.

4. Evaluation Protocol

In this section, we first present the description of the dataset and how it was prepared
for conducting experiments to validate the performance of LMPSeizNet. Then, we describe
the details of the framework that we used to perform experiments. Additionally, we
highlight the training procedure for LMPSeizNet. Finally, we state the evaluation metrics
used to measure the performance of LMPSeizNet. All experiments were performed on a
PC equipped with 128 GB of RAM and an NVIDIA Quadro RTX 6000 GPU. The model was
implemented using the MATLAB Deep Learning Toolbox R2022b.

4.1. Dataset and Data Preparation

To implement our method, we used the CHB-MIT dataset, collected at the Children’s
Hospital Boston, consisting of EEG recordings of children with epilepsy [40]. The database
is publicly available [41]. More details about the dataset are provided below: The CHB-MIT
database has been used in recent work for epileptic seizure classification [16]. This database
contains EEG signals of 24 subjects sampled at 256 Hz. EEG signals were recorded using
23 electrodes (24 or 26 in a few cases), namely, FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3,
C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ,
P7-T7, T7-FT9, FT9-FT10, FT10-T8, and T8-P8 [42], using the international 10–20 placement
system. Some subjects have ictal periods of less than 6 s. However, according to the opinion of
electroencephalographers, a neurological disorder depicted in EEG signals can be considered a
seizure if it persists and evolves for more than six seconds [43]. As such, to validate our method,
we selected the EEG signals of 11 subjects (chb01, chb02, chb03, chb07, chb10, chb17, chb18,
chb19, chb20, chb21, and chb22) who had seizures for a duration of at least 6–10 s. Further,
though the EEG signals were recorded using the international 10–20 placement system, we
found that all files associated with three subjects (i.e., chb18, chb20, and chb22) have different
channel montages from the rest. Accordingly, we excluded these three subjects also and finally
used the data from eight subjects. Also, among 23 channels, FP1-F3, F4-C4, FP2-F8, CZ-PZ, and
T8-P8 include a large number of not-a-number (NaN) entries, so these channels were excluded.
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We worked on creating trials for the dataset of three classes: inter-ictal, pre-ictal, and
ictal. First, we loaded the data for each person as described in Section 4.1. Then, we read
the EEG in .edf files and the seizure-labeled files in the .txt file that contains the seizure time.
After that, we divided the EEG signal into three segments: inter-ictal, pre-ictal, and ictal.
The pre-ictal state is 10 min before the seizure starts [44], the ictal state time is specified in
the .txt file for each EEG, and the inter-ictal state represents the residual of the EEG signal.
Afterward, we segmented the EEG signal corresponding to each state into trials. Finally, we
saved all inter-ictal trials, all pre-ictal trials, and all ictal trials in .mat file for each subject.

4.2. Evaluation Procedure and Metrics

To validate the performance of LMPSeizNet, we used the subject-independent evalua-
tion with 10-fold cross-validation, an approach adopted in state-of-the-art methods. In this
approach, the dataset from all subjects is divided into ten folds, and the same experiment is
repeated ten times for each fold in such a way that eight folds are used for training, one fold
is used for validation, and one fold is used for testing. This process ensures that every time,
the model is trained on different datasets and tested on different sets, which helps to assess
the robustness and generalization of the model. The experiments were conducted on the
Google Cloud Platform. The model was trained using the Adaptive Moment Estimation
(ADAM) optimizer. The learning rate used for training was 0.01.

To measure the performance of LMPSeizNet, we used three performance measure-
ments: accuracy, sensitivity, and specificity. Accuracy represents the ratio of all correctly
classified EEG epochs among all tested subjects. Sensitivity is defined as the ratio of
correctly classified ictal EEG epochs (T.P.) to the total number of correctly classified and
misclassified ictal EEG epochs. Specificity is defined as the ratio of correctly classified
inter-ictal EEG epochs (T.P.) to the total number of correctly classified and misclassified
inter-ictal EEG epochs. The accuracy, sensitivity, and specificity are defined formally in
Equations (7)–(9), respectively. The effectiveness of classification methods depends on
providing high rates of these metrics.

Accuracy = TP + TN/(TP + TN + FP + FN), (7)

Sensitivity = TP/(TP + FN), (8)

Sepeci f icity = TN/(TN + FP) (9)

5. Ablation Study

In this section, we present the details of different experiments that were conducted to
find the best configuration of LMPSeizNet and tune the hyperparameters. Also, we discuss
the results obtained in all these experiments.

5.1. Configuration of LMPSeizNet

We performed several experiments with two classes (inter-ictal and ictal) to find the
best configuration of LMPSeizNet that gives the best performance. We used experiments
with two classes (inter-ictal and ictal) to fine-tune the hyperparameters, including filter size,
number of filters, the size of strides, and the number of channels in each epoch (EEG trial).

5.1.1. The Impact of Pyramid Architecture

In this experiment, we focused on finding the LMPSeizNet model’s best architecture,
which gives the best performance and involves less complexity. We conducted this ex-
periment using EEG trials composed of three channels: {FP1-F7, F7-T7, T7-P7}, and the
number of training epochs for the optimizer for training the model was set equal to five.
As shown in Table 2, we fixed the number of filter sizes and changed the number of filters
according to the pyramid design approach [36]; specifically, we decreased the number of
filters rather than increasing them. The results in Table 3 show that the pyramid design
approach provides better accuracy, sensitivity, and specificity results, which are 86.94%,
88.52%, and 85.36%, respectively. In contrast, the traditional approach gives accuracy,
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sensitivity, and specificity of 82.78%, 84.53%, and 81.03%, respectively. In the following
experiments, we fix the pyramid architecture.

Table 2. Results showing the comparison of the two design approaches, pyramid and traditional,
with the channels {FP1-F7, F7-T7, T7-P7}.

Approach
Filter Size #Filters

Acc (%) Sen (%) Spe (%)
T0, T1,T2, T3 K0, K1 ,K2, K3,K4 ,K5, K6

Pyramid 128, 64, 32,16 64, 32, 16, 8, 32, 16, 8 86.94 88.52 85.36

Traditional 128, 64, 32, 16 8, 16, 32, 64, 16, 32, 64 82.78 84.53 81.03

Table 3. The average performance over 10 folds of the best configuration of LMPSeizNet with
channels {F7-T7, F3-C3, FT9-FT10}.

Performance

Avg Accuracy % Avg Accuracy % Avg Specificity %

Experiment 5 97.42 99.33 95.51

5.1.2. Hyperparameter Tuning

Four experiments were conducted to fine-tune different hyperparameters of the LMP-
SeizNet architecture, including the filter sizes, number of filters, channel combinations, and
strides with five training epochs of the optimizer for each experiment and 0.01 learning
rate. First, in Experiment 1, we fixed the number of filters, the channels, and the stride and
changed the filter sizes to different values in the range from 8 to 128 by increasing with
a power of 2 to obtain the best performance. The results shown in Figure 4 indicate that
the filter sizes T0 = 128, T1 = 32, T2 = 16, and T3 = 8 obtained the best performance, where
accuracy is 90.77%, sensitivity is 92.01%, and specificity is 89.52%.
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Secondly, in Experiment 2, we fixed the filter sizes, channels, and strides that provided
the best performance in Experiment 1 and changed the number of filters to the values in the
range from 8 to 256, by increasing with a power of 2. The results demonstrated in Figure 5
reveal that the model achieved the best performance when the number of filters is 64, 32, 16,
8, 32, 16, and 8 for the TConv, TSepConv-1, TSepConv-2, TSepConv-3, SConv-1, SConv-2,
and SConv-3 blocks, respectively, which obtained an accuracy equal to 90.77%, sensitivity
equal to 92.01%, and specificity equal to 89.5%.
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Figure 5. Results of Experiment 2 depicting the effects of varying numbers of filters [K0, K1, K2, K3,
K4, K5, K6] of each block [TConv, TSepConv-1, TSepConv-2, TSepConv-3, SConv-1, SConv-2, SConv-
3]. The experiments were performed with the channels {FP1-F7, F7-T7, T7-P7} and fixed filter sizes.

Further, we conducted several experiments with the best configuration provided by
Experiments 1 and 2 with different combinations of channels reported in refs. [35,45,46].
Precisely, the study in [46] reported that the channel combinations {F7−T7, T7−P7, F3-C7,
C3−P3, P4−O2}, {F7-T7, T7-F7, C4-P4, F8-T8, T8-P8}, {F7-T7, T7-F7, F3-C3, C3-P3, P4-O2,
FZ-CZ}, {FP1-F7, F7-T7, T7-P7, P7-O1, P4-O2, FZ-CZ},{P7-O1, P3-O1, C4-P4, F8-T8, T8-P8},
and {F7-T7, T7-P7, P3-O1, P4-O2, F8-T8, T8-P8} provide more than 60% successful rate.
Furthermore, we conducted the experiments with the combination {F7-T7, F3-C3, FT9-
FT10}, where the channels showed the highest variance, as reported in refs. [35,45,46]. The
results depicted in Figure 6 show that in our case, the combination {F7-T7, F3-C3, FT9-FT10}
also gives the best performance, i.e., an accuracy of 93.01%, sensitivity of 98.17%, and
specificity of 87.85%. As such, we adopted this combination of channels in our experiments.

Finally, we conducted several experiments using the configuration obtained from
Experiment 3 with different strides for each class to generate the EEG trials for training;
each time, we changed the stride for each class with values 1, 1.5, or 2 s. The stride value
equal to 2 refers to no overlapping, the stride value equal to 1.5 refers to there being 25%
overlapping, and the stride value equal to 1 refers to there being 50% overlapping with the
maximum number of training epochs of the optimizer to find out the best stride for each
class (inter-ictal, ictal). The results illustrated in Figure 7 show that when the stride value
equals 2 for each class, we obtain the best performance.
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6. Experimental Results

After the ablation study, we obtained the best configuration of LMPSeizNet. Using
the final model, we conducted Experiment 5 for two classes (inter-ictal and ictal) with the
channels {F7-T7, F3-C3, FT9-FT10} using 10-fold cross-validation. We trained the model
until we obtained the best validation accuracy for each fold and then tested it on the
held-out fold as a testing set. The average performance results are shown in Table 3; we
obtained an average accuracy equal to 97.42%, an average sensitivity equal to 99.33%,
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and an average specificity equal to 95.51%. The results show a significant performance
improvement compared to the entire performance results of the previous experiments.

6.1. Analysis of the Performance of the Proposed Method

In this section, we analyze the decision-making mechanism of the LMPSeizNet model.
First, we analyze the features learned by the model using the t-SNE plot and then its
decision-making with the confusion matrix in Sections 6.1.1 and 6.1.2, respectively.

6.1.1. Analysis of Features

The spatial feature representation block (ϕ2) learns the high-level multiscale spatiotem-
poral features, and the prediction accuracy of the model depends on whether these features
are discriminative, i.e., they have a large intra-class variation. For this purpose, we extracted
features as the output of ϕ2 and plotted them using the commonly used visualization tool
t-SNE. Figure 8 shows the t-SNE plot of the extracted features of the two classes (inter-ictal
and ictal). The distribution of features in the plot indicates that features belonging to
the two classes have large inter-class variation, i.e., the features are discriminative and
lead the model to make correct predictions in most of the cases. Though there are some
misclassifications, i.e., features land on the region of the wrong class, overall, the features
for the two classes form two separate clusters.
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difference, and the learned features are discriminative.

6.1.2. Analysis of Decision-Making

Generally, the confusion matrix is an efficient performance measure for classification
problems and gives a deeper understanding of the internal decision-making mechanism
of the classifier. It allows for visualizing and summarizing a classification algorithm’s
performance and permits measuring recall, precision, and accuracy. It shows the amount of
confusion or uncertainty in the decisions of the model in correctly classifying the inter-ictal
and ictal classes. Figure 9 shows the confusion matrix of the model for the two classes (inter-
ictal and ictal). It can be noticed that 574 inter-ictal class signals are correctly classified while
only 27 inter-ictal class signals are incorrectly classified as ictal class. Similarly, 597 signals’
ictal classes are correctly classified, while four ictal signals are classified as inter-ictal class.
This indicates that the model’s level of confidence in correctly classifying the two classes is
high. The small number of misclassifications is probably due to the noise in the data.
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7. Discussion

In this section, we discuss the performance of LMPSeizNet in view of the results
of the experiments we performed for its validation. Firstly, we discuss the impact of its
pyramid architecture. Secondly, we discuss the effects of hyperparameters of LMPSeizNet
and the results obtained by the final configuration of LMPSeizNet for the two classes
(inter-ictal and ictal). Finally, the performance of the model is compared with that of the
state-of-the-art methods.

7.1. Results and Performance

Table 2 depicts the performance of the LMPSeizNet model with two different choices
of architecture design based on the traditional and pyramid approaches. In the traditional
approach, the number of filters increases as the depth of the network increases, whereas
the number of filters decreases in the pyramid approach as the network goes deeper. The
pyramid approach results in the reduction in the parametric complexity as well as the
improvement in prediction performance; it has accuracy, sensitivity, and specificity of
86.94%, 88.52%, and 85.36%, respectively, which are better than those obtained with the
traditional approach. Further, in the case of the pyramid approach, the number of learnable
parameters is 18.03k, whereas it is 22.3k in the case of the traditional approach. The
pyramid approach has better performance because it involves fewer parameters, and the
model can be learned with the available limited amount of EEG data without overfitting.
Consequently, we adopted the pyramid architecture for LMPSeizNet.

After fixing the pyramid design, we fine-tuned the various hyperparameters and
performed several experiments to find the best values of filter sizes and the number of
filters. The results revealed that the best filter sizes are T0 = 128, T1 = 32, T2 = 16, and
T3 = 8, whereas the best numbers of filters are 64, 32, 16, 8, 32, 16, 8 for TConv, TSepConv-1,
TSepConv-2, TSepConv-3, SConv-1, SConv-2, and SConv-3 blocks, respectively. Later, we
used the configuration of LMPSeizNet, containing the best filter sizes and the best numbers
of filters, to find the best combination of EEG channels. Keeping in view the findings in the
literature, we examined different combinations of the channels, and the results revealed
that the best combination of channels is {F7-T7, F3-C3, FT9-FT10}. Finally, we fixed the
best combination of channels, the best filter sizes, and the number of filters to find the best
value of stride for each class (inter-ictal, ictal); we found out that when there are no overlap
strides, i.e., stride value equals two, we obtain the best performance. The summary of the
results of each experiment for hyperparameter tuning is shown in Figures 4–7 to obtain the
final configuration of LMPSeizNet. The results of the ablation experiments indicate that the
different choices of the hyperparameters result in different performances of LMPSeizNet
and help to find the best choices.
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Finally, using the best configuration of the architecture of LMPSeizNet and the best
combination of channels {F7-T7, F3-C3, FT9-FT10}, we performed experiments using 10-fold
cross-validation to find out the real performance of the model across different training and
test sets and to know whether the model has good generalization. The results indicate that
the model shows high performance, which is comparable to one of the best state-of-the-art
methods [35], and outperforms in terms of sensitivity with a shorter temporal length of
EEG trials. Moreover, the number of learnable parameters of LMPSeizNet is significantly
less than those of the model proposed in ref. [36]. We analyzed the features of the best
configuration of LMPSeizNet and observed that the extracted features for the two classes
(inter-ictal and ictal) are discriminative. Further, the confusion matrix revealed that the
model is robust and makes the decision with the least confusion.

7.2. Comparison with the State-of-the-Art Methods

In this section, we compared LMPSeizNet with the state-of-the-art (SOTA) methods
that addressed the same problem, i.e., non-seizure vs. seizure or inter-ictal vs. ictal, used
the same evaluation protocol as we used, and evaluated using the CHB-MIT dataset. The
state-of-the-art techniques used the subject-independent protocol for evaluation, with a
trial length equal to two seconds. A summary of the approach of each SOTA method and
its complexity in terms of the number of learnable parameters and the performance of each
method in terms of accuracy, sensitivity, and specificity is given in Table 4.

Table 4. Comparison with the state-of-the-art (SOTA) methods on the CHB-MIT dataset. Each
SOTA method used the same evaluation protocol as we used and addressed the same problem,
i.e., non-seizure vs. seizure or inter-ictal vs. ictal. Notations: #Param—number of learnable parame-
ters, #Sub—number of subjects, #Ch—number of channels, T.L.—the trail length.

Ref. #Param Method #Sub #Ch TL (s)
Performance

Acc (%) Sen (%) Spe (%)

Zabihi et al. [24] (2019) - unonlinear dynamics
and nullclines 24 23 1 95.11 91.15 95.16

Li et al. [25] (2020) - nonlinear modes (N.M.s)
and KNN 24 4 2 98.61 98.40 99.10

Wang et al. [31] (2021) 105,538 RS-DA strategy, 1D-CNN 24 23 2 99.54 88.14 99.62

Abdelhameed et al. [36] (2021) 190,869
two-dimensional deep

convolution
autoencoder (2D-DCAE)

16 23 4 98.79 98.72 98.86

Rafiammal et al. [26] (2021) -

discrete wavelet transform and
Cluster-based Nearest

Neighborhood machine
learning algorithm

23 23 - 90.0 85.00 85.00

Lyu et al. [34] (2021) 88,813,634 GCPL 23 21 2 93.59 90.84 96.34

Zarei et al. [27] (2021) -
discrete wavelet transform,

orthogonal matching pursuit,
and entropy

23 23 2 98.00 97.00 98.00

Cimr et al. [14] (2023) 15,059 CAD 24 21 2 96.99 96.89 97.06

Tripathi et al. [39] (2023) 144,000,000 superlet transform
(SLT) + VGG-19 22 23 2 94.3 94.00 94.5

Abdulwahhab et al. [15] (2024) undefined * CNN and RNN 23 23 - 97.12 96.75 97.49

LMPSeizNet 18,024 multiscale CNN 8 3 2 97.42 99.33 95.51

* The specification of the architecture of the model is not provided; “-“ means the method is based on a hand-engineered
feature extraction technique.

Among them, we noted that Abdelhameed et al. [36] obtained the best performance
among these studies; they achieved an accuracy equal to 98.79%, a sensitivity equal to
98.72%, and a specificity equal to 98.86%. They used 16 subjects, 23 channels, a trial length
equal to four seconds, and the subject-independent protocol for evaluation. In contrast,
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Rafiammal et al. [26] and Lyu et al. [34] provided the lowest performance among these
studies. Both studies used 23 subjects and a subject-independent protocol for evaluation
but differed in the number of channels used.

We noted that Abdelhameed et al. [36] and Zarei et al. [27] used the same evaluation
protocol, the number of channels, and the number of classes. Still, they differed in the
length of trials and the number of subjects, where Abdelhameed et al. [36] used a trial
length equal to four and 16 subjects, while Zarei et al. [27] used a trial length equal to
two and 23 subjects. However, Abdelhameed et al. [36] provided a higher performance.

Additionally, we observed that Wang et al. [31] and Li et al. [25] used the same
evaluation protocols, number of subjects, and trial length, but they differed in the number of
channels used, where Wang et al. [31] used 23 channels, while Li et al. [25] used 4 channels.
Consequently, Li et al. [25] reported better performance on average.

When we compared the proposed method with those by Abdelhameed et al. [36] and
Li et al. [25], we found that we used the same evaluation protocol as Abdelhameed et al. [36]
and used the same trial length as Li et al. [25]. We noted that the proposed method out-
performed both methods in terms of sensitivity; the methods by Abdelhameed et al. [36]
and Li et al. [25] achieved sensitivities of 98.72% and 98.40%, respectively, whereas the
proposed method achieved a sensitivity of 99.33%.

The comparison of the proposed method with that by Cimr et al. [14] indicates that
LMPSeizNet uses fewer channels (i.e., 3 instead of 21) and involves slightly more learn-
able parameters (i.e., 18,024 vs. 15,059). However, LMPSeizNet performs better despite
the slight difference in the complexity of the parameters reported by Cimr et al. [14].
There are two reasons that LMPSeizNet performs better. First, it encodes multiscale in-
formation, while Cimr et al. [14] do not use the multiscale of EEG signals; specifically,
LMPSeizNet captures multiscale temporal and spatial information from an EGG trial, lead-
ing to better performance than the single scale approach by Cimr et al. [14]. Second, it
does away with redundant information by focusing on salient channels and has a better
capacity to learn discriminative features; it has a good trade-off between the model com-
plexity and the amount of training data. Further, we found that Tripathi et al. [39] has
a very high learnable parameter complexity, reaching 144000000, which leads it to have
the third lowest performance after Rafiammal et al. [26] and Lyu et al. [34]. Finally, we
compared LMPSeizNet with Abdulwahhab et al. [15]; we found that our proposed method
achieved better accuracy and sensitivity with a number of subjects and channels, whereas
Abdulwahhab et al. [15] did not provide the parameter complexity and the specification of
the architecture of their model.

Interestingly, the proposed method achieved better sensitivity using only three chan-
nels; the proposed method decreased the computation complexity in contrast to other
approaches. This is because it is based on the pyramid approach and performs multiscale
analysis of EEG signals. It is important to note that sensitivity, i.e., the true positive rate, is
more important for detecting epileptic seizures.

8. Conclusions

In this paper, we addressed the problem of epileptic seizure detection. Epilepsy is a
chronic disease that causes a severe disturbance of neurons, causing a seizure. The rapid
detection of epilepsy seizures is important to reduce the risk of seizure-related complica-
tions. The EEG technique is the most common method used for detecting epileptic seizures,
and deep learning techniques employed to develop epilepsy seizure detection based on
EEG signals have limitations. To overcome these limitations, we designed an efficient
and lightweight multiscale convolutional neural network model (LMPSeizNet) for seizure
detection on EEG signals. We evaluated the model using 10-fold cross-validation on a
benchmark public domain dataset (CHB-MIT dataset), and the results showed that LMP-
SeizNet has better sensitivity than state-of-the-art methods despite having less parameter
complexity and computational complexity. The LMPSeizNet model performs better than
state-of-the-art methods because it can be trained with a limited amount of data due to
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its lightweight architecture, and it analyses an EEG signal to extract spectral information
using multiscale temporal convolutions. Further, extensive experiments were conducted to
tune the hyperparameters of the model and to select the number of channels that play key
roles in detecting ictal and inter-ictal states. We found that the channels F7-T7, F3-C3, and
FT9-FT10 are effective in detecting the seizure; these channels capture the brain activations
from the frontal, temporal, and central brain lobes. To determine the decision-making of
LMPSeizNet that leads to its superior performance, we analyzed the features learned by
the model, which indicated that it learns discriminative features, which eventually help to
make correct decisions in predicting ictal and inter-ictal states. In addition, to determine
how it predicts ictal and inter-ictal states, we computed the confusion matrix that revealed
that the model correctly detects most cases; only a few cases are misclassified. LMPSeizNet
will prove to be a helpful tool for neurologists and clinicians to detect seizures of epilepsy
patients and manage their treatment. For future work, we will explore the challenging
problem of detecting seizures in the inter-ictal vs. pre-ictal vs. ictal scenario and design an
efficient and lightweight model for this problem.
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List of Notations

Variable Meaning Variable Meaning
x EEG epochs K0 one-dimensional (1D) temporal filters
C channel fs sampling rate
T time point F0 feature map of K0
ŷ predicted label of x T0, T1, T2 , T3 filter size
θ learnable parameters K0 , K1 , K2, K3, K4 , K5, K6 numbers of filters
H (LMPSeizNet) model v1, v2, v3 feature vectors
ϕ1 the multiscale temporal feature representation p posterior probabilities vector
ϕ2 the spatial feature representation θ̂ minimal loss
ϕ3 the classifier TP number of true positives
Acc accuracy rate TN number of true negatives
Sen sensitivity rate (true positive rate) FP number of false positives
Spe specificity rate (true negative rate) FN number of false negatives
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