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Abstract: In this paper, we apply the pseudospectral method based on Chebyshev cardinal function to1

solve the parabolic partial integro-differential equations (PIDEs). Since these equations play a key role2

in mathematics, physics, and engineering, then finding an appropriate solution is important. We use3

an efficient method to solve PIDEs, especially for its integral part. Unlike using Chebyshev functions,4

using Chebyshev cardinal functions, it is no longer necessary to integrate to find expansion coefficients5

of a given function. This reduces the computation. The convergence analysis is investigated and6

some numerical examples guarantee our theoretical results. We compare the presented method with7

others. The results confirm the efficiency and accuracy of the method.8

Keywords: Interpolating scaling functions; Hyperbolic equation; Galerkin method9

1. Introduction10

In this paper, we apply the pseudospectral method based on Chebyshev cardinal functions to
solve one-dimensional partial integro-differential equations (PIDEs)

wt(x, t) + αwxx(x, t) = β
∫ t

0
k(x, t, s, w(x, s))ds + f (x, t), x ∈ [a, b], t ∈ [0, T], (1)

with initial and boundary conditions

w(x, 0) = g(x), x ∈ [a, b], (2)

w(0, t) = h0(t), w(1, t) = h1(t), t ∈ [0, T], (3)

where α and β are constants and the functions f (x, t) and k(x, t, s, w) are assumed to be sufficiently
smooth on D := [0, 1] × [0, T] and S with S := {(x, t, s) : x ∈ [0, 1], s, t ∈ [0, T]}, respectively, as
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1 INTRODUCTION 2

prescribed before and such that (1) has a unique solution w(x, t) ∈ C(D). In addition, we assume that
the kernel function is of diffusion type which is given by

k(x, t, s, w(x, s)) := k1(x, t− s)w(x, s), (4)

and satisfies the Lipschitz condition as follows

|k(x, t, s, w(x, s))− k(x, t, s, v(x, s)) ≤ A|w(x, s)− v(x, s)|, (5)

where A ≥ 0 is referred to as a Lipschitz constant.11

In various fields of physics and engineering, systems are often functions of space and time and12

are described by partial differential equations. But in some cases, such a formulation can not accurately13

model this system. Because we can not take into account the effect of a past time when the system is a14

function of a given time. Such systems appear in heat transfer, thermoelasticity and nuclear reactor15

dynamics. This phenomenon has resulted in the inclusion of an integral term in the basic partial16

differential equation that leads to a PIDEs [26]. The existence, uniqueness, and asymptotic behavior of17

the solution of this equation are discussed in [8]. In this paper, we can find the physical situation that18

leads to equation (1). A Simple example that refers to a PIDEs is considered by Habetler and Schiffman19

[10] where the compression of viscoelastic media is studied. For more applications, we refer readers to20

[1,16–18].21

Spectral methods are schemes to discretize the PDEs. To this end, they utilize the polynomials22

to approximate the exact solution. Since any analytic function can be exponentially approximated23

by polynomials. In contrast to other methods such as finite elements and finite differences, these24

methods can achieve an infinite degree of accuracy. That’s mean the order of the convergence of25

the approximate solution is limited only by the regularity of the exact solution. In other words,26

for numerical simulations, fewer degrees of freedom are necessary to obtain a given accuracy. The27

Galerkin method is a class of spectral techniques that convert a continuous operator problem to28

a discrete problem. In other words, this scheme applies the method of variation of parameters to29

function space by transforming the equation to a weak formulation. To implement this method,30

we can not compute the integrals analytically. That’s why we can’t use this method in most cases31

[4,24]. Another method that is closely related to spectral methods is the pseudospectral method. The32

pseudospectral methods are a special type of numerical method that used scientific computing and33

applied mathematics to solve partial differential equations. These methods allow the representation of34

functions on a quadrature grid and cause simplification of the calculations [21,22].35

Several techniques have been used to solve one-dimensional partial differential equations,36

such as the finite difference method, finite element method, and spectral method. In [9], the37

Legendre-collocation method is used to solve the parabolic Volterra integro-differential equation.38

For an infinite domain, Dehghan et al. [9] used the algebraic mapping to obtain a finite domain and39

then they utilized their proposed method. The Legendre multiwavelets collocation method is used to40

find the numerical solution of PIDEs [3]. To find the approximate solution of PIDEs, Avazzadeh et al.41

[2] applied the radial basis functions (RBFs) and finite difference method (FDM). To solve nonlinear42

parabolic PIDEs in one space variable, Douglas and Jones [7] proposed backward difference and43

Crank-Nicolson type methods. Han et al. [11] approximated the solution of (1) with kernel function of44

diffusion type and on unbounded spatial domains using artificial boundary method. In [23], a finite45

difference scheme is considered to solve PIDEs with a weakly singular kernel.46

According to the above, considerable attention has been devoted to solving PIDEs numerically. In47

this paper, we introduce a simple numerical method with high accuracy. To this end, while introducing48

the Chebyshev cardinal functions, the pseudospectral method applies to obtain the approximate49

solution of PIDEs (1). Generally, cardinal functions {Ci} are polynomials of a given degree that Ci50

vanishes at all interpolation grids except xi. These bases are also called the shape functions, Lagrange51

basis, and so on. One of the advantages of using such bases is the reduction of calculations to find the52
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2 CHEBYSHEV CARDINAL FUNCTIONS 3

expansion coefficients of a given function. In other words, to find the expansion coefficients based on53

these bases, there is no need to integrate, and this is due to the cardinality, which makes these bases54

superior to other functions. Laksetani and Dehghan [15] is used Chebyshev cardinal functions to solve55

a PDE with an unknown time-dependent coefficient. In [20], these functions are used to solve the56

fractional differential equation. Heydari [13] described a new direct scheme for solving variable-order57

fractional optimal control problem via Chebyshev cardinal functions. For more details about the58

Chebyshev cardinal functions and their applications, we refer the reader to [14? ].59

This paper is organized as follows, Section 2 is devoted to a brief introduction to Chebyshev60

cardinal functions. In Section 3, we presented an efficient and applicable method based on Chebyshev61

cardinal functions to solve PIDEs (1). In Section 4, the convergence analysis is investigated and we62

proved that the proposed method is convergence. Section 5 is devoted to some numerical tests to show63

the ability ad accuracy of the method. Finally, Section 6 contains a few concluding remarks.64

2. Chebyshev cardinal functions65

Given M ∈ N, assume thatM := {1, 2, . . . , M + 1} and X := {xi : TM+1(xi) = 0, i ∈ M} where
TM+1 is the first kind Chebyshev function of order M + 1 on [−1, 1]. Recall that the Chebyshev grid is
obtained by

xi := cos
(
(2i− 1)π
2M + 2

)
, ∀i ∈ M. (6)

To utilize the Chebyshev functions of any arbitrary interval [a, b], one can apply the change the variable
x =

(
2(t−a)

b−a − 1
)

to obtain the shifted Chebyshev functions, viz

T∗M+1(t) := TM+1

(
2(t− a)

b− a
− 1
)

, t ∈ [a, b]. (7)

Note that it is easy to show that the grids of shifted Chebyshev function T∗M+1 is equal to ti =66

(x+1)(b−a)
2 + a.67

A significant example of the cardinal functions for orthogonal polynomials is the Chebyshev
cardinal functions. The cardinal Chebyshev functions of order M + 1 are defined as

Ci(x) =
TM+1(x)

TM+1,x(xi)(x− xi)
, i ∈ M, (8)

where the subscript x denotes x-differentiation. It is obvious that the functions Ci(x) are polynomials
of degree M which satisfy the condition

Ci(xl) = δil (9)

where δil is the Kronecker δ-function.68

In view of (9), the cardinal functions are nonzero at one and only one of the points xi ∈ X implies
that for arbitrary function p(t), the function can be approximated by

p(t) ≈
M+1

∑
i=1

p(ti)Ci(t). (10)

Assume that Hn([a, b]), n ∈ N (Sobolev spaces) denotes the space of all functions p ∈ Cn([a, b])
such that Dα p ∈ L2([a, b]) for all α ≤ n, where α is a nonnegative integer and D is the derivative
operator. Sobolov space Hn([a, b]) is equipped with a norm defined by

‖p‖2
Hn([a,,b]) =

n

∑
l=0
‖p(l)(t)‖2

L2([a,b]). (11)
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There exist a semi-norm that define as follows

|p|2Hn,M([a,b]) =
M

∑
l=min n,M

‖p(l)(t)‖2
L2([a,b]). (12)

It follows from [5] that the error of expansion (10) can be bounded by the following lemma.69

Lemma 1. Let {ti}i∈M ∈ X ∗ denotes shifted Gauss-Chebyshev points where X ∗ := {ti : T∗M+1(ti) = 0, i ∈
M} and that p(t) ∈ Hn([a, b]) can be approximated by pM via

pM(t) =
M+1

∑
i=1

p(ti)Ci(t).

Then one can prove that
‖p− pM‖L2([a,b]) ≤ CM−n|p|Hn,M([a,b]), (13)

where C is a constant and independent of M.70

3. Pseudospectral method71

In this section, we apply the pseudospectral method to solve PIDEs (1) based on Chebyshev
cardinal functions. Let us consider the partial integro-differential equation (1) on the region Ω× T. We
introduce differential operator

L :=
∂

∂t
+ α

∂2

∂x2 , (14)

and integral operator

I := β
∫ t

0
k(x, t, s, .)ds. (15)

Applying these operators, PIDEs (1) can be rewritten in the operator form

(L+ I)(w) = f . (16)

Let the solution of (1) is approximated by the polynomial w̃(x, t), via

w̃(x, t) =
M+1

∑
i=1

M+1

∑
j=1

wn(ti, tj)Ci(x)Cj(t). (17)

If we define a matrix W of dimension (M + 1) × (M + 1) whose (i, j)-th element is w(ti, tj), then
equation (17) becomes the matrix problem

w̃(x, t) = CT(x)WC(t), (18)

where the vector elements of C(x) are the Chebyshev cardinal functions {Ci(x)}.72

Inasmuch as the Chebyshev cardinal functions are polynomial, it is easy to evaluate their
derivatives. In view of (17), one can write

w̃x(x, t) =
M+1

∑
i=1

M+1

∑
i=1

w(ti, tj)Ci,x(x)Cj(t) = CT
x (x)WC(t), (19)

where Cx(x) is a vector of dimension (M + 1) whose i-th element is Ci,x(x). Similarly we have

w̃t(x, t) =
M+1

∑
i=1

M+1

∑
i=1

w(ti, tj)Ci,x(x)Cj(t) = CT(x)WCt(t), (20)
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where Ct(t) is a vector of dimension (M + 1) whose i-th element is Ci,t(t). Suppose thatD ∈ RM+1,M+1

is the operational matrix of derivative whose (i, j)-th element is Di,j = Ci,t(tj). Thus, it follows from
Cx(x) = DC(x) that

w̃x(x, t) = CT(x)DTWC(t), (21)

and
w̃t(x, t) = CT(x)WDC(t). (22)

It can easily be shown that w̃xx(x, t) is approximated as follows

w̃xx(x, t) = CT(x)DT2
WC(t). (23)

Thus, by substituting (22) and (23) into the differential part of desired equation (16), we can
approximate the differential operator L (14), via

L(w)(x, t) ≈ CT(x)WDC(t) + αCT(x)DT2
WC(t), (24)

To approximate the integral part, we assume that

∫ t

0
C(x)dx = IC(t), (25)

where I ∈ RM+1,M+1 is the operational matrix of integral. It follows from (15) that

I(w)(x, t) = β
∫ t

0
k(x, t, s, w(x, s))ds. (26)

If we replace w with w̃, then one can write

I(w)(x, t) ≈ β
∫ t

0
k(x, t, s, w̃(x, s))ds. (27)

Assume that k(x, t, s, w̃(x, s)) can be approximated by CT(x)KC(t) where K is a matrix whose elements
depend on t and unknown coefficients W. Replacing CT(x)KC(t) into (27), and using the operational
matrix of integration I, we get

I(w)(x, t) ≈ β
∫ t

0
CT(x)KC(s)ds

= βCT(x)K
∫ t

0
C(s)ds

= βCT(x)KIC(t)
= q(x, t) = CT(x)QC(t), (28)

where (i, j)-th element of matrix Q is q(ti, tj). Substituting (25) and (28) into (16), one can write

CT(x)(WD + αDT2
W + Q)C(t) = CT(x)FC(t). (29)

The Chebyshev cardinal functions {Ci(x)} are orthogonal with respect to weighted inner product on
[−1, 1]

〈Ci(x), Cj(x)〉ω(x) =

{
π

M+1 , i = j,
0, i 6= j,
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where ω(x) = 1/
√

1− x2. This gives rise to equation

WD + αDT2
W + Q = F. (30)

Let us rewrite this system as

F (W) := WD + αDT2
W + Q− F = 0. (31)

We Replace the first column of (31) with the initial condition (2) and the first and last rows of (31) with
the boundary conditions (3), i.e.,

[F (W)]i,1 = [WC(0)]i − g(ti),

[F (W)]1,i = [CT(0)W]i − h0(ti),

[F (W)]M+1,i = [CT(1)W]i − h1(ti),

i = 1, . . . , M + 1.

Using the matrix to vector conversion, this system is changed to a new system by (M + 1)2

equations with (M + 1)2 unknowns{
W̄Γ = F, if k is a nonlinear function of w,
F̄ = F, if k is a linear function of w,

(32)

where W̄, F, and F̄ are obtained using the matrix to vector conversion of W, F, and F respectively.73

After solving the linear or nonlinear system (32) using the generalized minimal residual method74

(GMRES) [19] and Newton-Raphson method, respectively, the unknowns W are found, and then the75

approximate solution can be obtained using (18).76

4. Convergence analysis77

Because the function f (x, t) is a continuous function on D, the approximate error by comparing78

the function f with f̃ may be bounded, established by the following theorem.79

Theorem 1. Let f : D → R2 be a sufficiently smooth function. Thus Chebyshev cardinal approximation to
function f can be written as

‖ f − f̃ ‖ ≈ O(2−2M). (33)

Proof. Let PM+1(x) denote that polynomial of degree M + 1 which interpolates to the function f at
the M + 1 zeros of the first kind Chebyshev polynomials. It follows from [6] that

| f (x, t)− PM+1(x, t)| = ∂M+1

∂xM+1 f (ξ, t)
ΠM+1

i=1 (x− ti)

(M + 1)!
+

∂M+1

∂tM+1 f (x, η)
ΠM+1

j=1 (t− tj)

(M + 1)!

− ∂2M+2

∂xM+1tM+1 f (ξ ′, η′)
ΠM+1

i=1 (x− ti)ΠM+1
j=1 (t− tj)

(M + 1)!(M + 1)!
.
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4 CONVERGENCE ANALYSIS 7

Since the leading coefficient of the first kind Chebyshev functions is 2M, and |Ti(x)| ≤ 1, ∀i ∈ M. It is
possible to write

| f (x, t)− PM+1(x, t)| ≤
(

b− a
2

)M+1 1
2M(M + 1)!

(
sup

ξ∈[a,b]
| ∂M+1

∂xM+1 f (ξ, t)|+ sup
η∈[0,T]

|∂
M+1

∂tr f (x, η)|
)

+

(
b− a

2

)2M+2 1
4M((M + 1)!)2 sup

(ξ ′ ,η′)∈D
| ∂2M+2

∂xr∂tM+1 f (ξ ′, η′)|.

Since f̃ is approximated by Chebyshev cardinal functions and these bases are polynomials, thus one
can obtain

‖ f − f̃ ‖2 =
∫∫

D
| f (x, t)− f̃ (x, t)|2dtdx

≤
∫∫

D
| f (x, t)− PM+1(x, t)|2dtdx

≤
∫∫

D

(
b− a

2

)M+1 1
2M(M + 1)!

(
sup

ξ∈[a,b]
| ∂M+1

∂xM+1 f (ξ, t)|+ sup
η∈[0,T]

|∂
M+1

∂tr f (x, η)|
)

dtdx

+
∫∫

D

(
b− a

2

)2M+2 1
4M((M + 1)!)2 sup

(ξ ′ ,η′)∈D
| ∂2M+2

∂xr∂tM+1 f (ξ ′, η′)|dtdx

≤ 2−2M (b− a)2M

(M + 1)!
Cmax(1/2 + 2−2M−2/(M + 1)!)

∫∫
D

dtdx

≤ C12−2M,

where C1 := (b−a)2M

(M+1)! Cmax(1/2 + 2−2M−2/(M + 1)!)|D| and

Cmax := max{ sup
ξ∈[a,b]

| ∂M+1

∂xM+1 f (ξ, t)|, sup
η∈[0,T]

|∂
M+1

∂tr |, sup
(ξ ′ ,η′)∈D

| ∂2M+2

∂xr∂tM+1 |}.

80

Theorem 2. The pseudospectral method for solving PIDEs (1) is convergence.81

Proof. Let w̃ denotes the approximate solution of (1) for which e = w− w̃. We subtract equation (1)
from

w̃t(x, t) + αw̃xx(x, t) = β
∫ t

0
k(x, t, s, w̃(x, s))ds + f̃ (x, t), (34)

to obtain the following equation

et(x, t) + αexx(x, t) = β
∫ t

0
k(x, t, s, e(x, s))ds + f (x, t)− f̃ (x, t). (35)

Now, Assume that we can approximate the error function e(x, t) as follows

e(x, t) ≈ CT(x)EC(t), (36)

where E is a matrix whose (i, j)-th element is e(ti, tj). Using this approximation and Lipschitz condition
(5), equation (35) may be written as

CT(x)EDC(t) + αCT(x)DT2
EC(t) ≤ βACT(x)EIC(t) + CT(x)ηC(t), (37)
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where | f − f̃ | ≈ CT(x)ηC(t). By dropping the second term in the left to the other side of the inequality
and taking norm from both sides, we have

‖ED‖ ≤ A|β|‖EI‖+ |α|‖DT2
E‖+ ‖η‖. (38)

Because {Ci} are orthogonal functions, we removed ‖C‖ from both sides. Multiplying the right side of
(38) by ‖D‖, it follows that

‖ED‖ ≤ A|β|‖EI‖‖D‖+ |α|‖DT2
E‖‖D‖+ ‖η‖‖D‖

≤ A|β|‖E‖‖I‖‖D‖+ |α|‖DT2‖‖E‖‖D‖+ ‖η‖‖D‖,

and then

‖E‖‖D‖ ≤ A|β|‖EI‖‖D‖+ |α|‖DT2
E‖‖D‖+ ‖η‖‖D‖

⇒ ‖E‖ ≤ A|β|‖E‖‖I‖+ |α|‖DT2‖‖E‖+ ‖η‖.

So, it is obvious that we shall have

‖E‖
∣∣∣1−A|β|‖I‖ − |α|‖D2‖

∣∣∣ ≤ ‖η‖. (39)

Consequently, we obtain

‖E‖ ≤
∣∣∣1−A|β|‖I‖ − |α|‖D2‖

∣∣∣−1
‖η‖. (40)

If f be a sufficiently smooth function, then ‖η‖ → 0 as M→ ∞. Thus, we have

‖e‖ → 0, as M→ ∞.

Therefore, the proposed method is convergent.82

5. Test problems83

Example 1. Let us dedicate the first example to the case that the desired equation (1) is of form

wt(x, t)− wxx(x, t) = f (x, t)−
∫ t

0
ex(t−s)w(x, s)ds,

with initial and boundary conditions

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = sin(t), w(1, t) = 0, t ∈ [0, 1],

and also f (x, t) := (−x2+1)ext+(x3+2 x2−x+2) sin(t)+(−x4+x2) cos(t)
x2+1 . The exact solution for this example is given

by [3]
w(x, t) = (1− x2) sin(t).

Table 1 shows a comparison between the proposed method and Legendre multiwavelets collocation method84

[3]. As you can see, our proposed method gives better results than [3]. According to table 1, we can see that with85

fewer bases, we have achieved much better accuracy than the method in [3]. For different values of M, the errors86

in Table 2 are given with L∞, L2 norms applying pseudospectral method based on Chebyshev cardinal functions.87

In Figure 1, the approximate solution, and absolute value of error are depicted.88
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Table 1. Comparison of the maximum absolute errors at different times for Example 1.

Legendre multiwavelets collocation method [3] Proposed method

t M = 8 M = 16 M = 32 M = 8
0.0625 7.4383e− 5 4.6240e− 6 1.2106e− 5 2.2070e− 8
0.1875 7.5155e− 5 1.2275e− 5 2.4685e− 5 1.1514e− 9
0.3125 1.4643e− 4 2.5696e− 5 3.5745e− 5 4.8570e− 8
0.4375 7.5929e− 5 4.2169e− 5 4.5563e− 5 1.4616e− 9
0.5625 1.2180e− 4 6.0743e− 5 5.3926e− 5 1.7855e− 9
0.6875 1.0567e− 4 8.1933e− 5 6.0499e− 5 1.0870e− 7
0.8125 4.7215e− 5 1.0738e− 4 6.4915e− 5 5.3619e− 9
0.9375 2.1869e− 4 1.3833e− 4 6.6396e− 5 3.8717e− 7

Table 2. The L∞, L2 errors and CPU time for Example 1.

m M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10
‖E‖2 5.8921e− 3 1.0990e− 3 5.7105e− 5 3.2074e− 6 6.3119e− 8 4.6636e− 9 7.3474e− 11
‖E‖∞ 5.4300e− 2 1.9000e− 3 1.1000e− 3 1.3510e− 4 3.8717e− 7 2.3385e− 8 3.8785e− 10

CPU time 1.141 1.985 3.953 7.172 15.890 23.515 42.031
Order of convergence - - 1.00679 1.10766 1.24750 1.27087 1.33619

Figure 1. Plot of the approximate solution and absolute value of the error for Example 1.
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5 TEST PROBLEMS 10

Table 3. The L∞, L2 errors and CPU time for Example 2.

m M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10
‖E‖2 7.4563e− 4 4.7516e− 5 3.0177e− 6 2.3288e− 7 3.4667e− 9 2.7823e− 10 2.4512e− 12
‖E‖∞ 5.8000e− 3 1.1697e− 4 2.6094e− 5 6.7272e− 8 5.0805e− 8 1.74111e− 9 5.4471e− 11

CPU time 0.922 1.890 3.578 6.547 15.203 23.344 40.062
Order of convergence - - 1.19642 1.17133 1.29749 1.30468 1.38764

Table 4. Comparison of the L∞ and Ł2 errors at different times for Example 2.

Reference [2](M=12) Reference [25](M=40) Proposed method (M=10)

t L2-error L∞-error L2-error L∞-error L2-error L∞-error
0.1 7.9401e− 8 3.9522e− 8 1.8818e− 5 1.1285e− 5 8.6171e− 15 6.0890e− 15
0.2 6.7287e− 8 3.2388e− 8 2.6480e− 5 1.6630e− 5 1.9171e− 14 8.9706e− 14
0.3 5.8151e− 8 2.6768e− 8 3.0188e− 5 1.9483e− 5 3.4101e− 14 4.2781e− 14
0.4 5.1314e− 8 2.3917e− 8 3.1915e− 5 2.0935e− 5 4.7705e− 14 6.2679e− 14
0.5 4.6268e− 8 2.3437e− 8 3.2470e− 5 2.1539e− 5 1.4383e− 13 3.5485e− 13
0.6 4.2620e− 8 2.3220e− 8 3.2421e− 5 2.1615e− 5 2.9489e− 13 4.3306e− 13
0.7 4.0062e− 8 2.3226e− 8 3.2001e− 5 2.1366e− 5 5.3306e− 13 7.6451e− 13
0.8 3.8392e− 8 2.3424e− 8 3.1393e− 5 2.0923e− 5 9.3758e− 13 1.3921e− 12
0.9 3.7575e− 8 2.3788e− 8 3.0699e− 5 2.0376e− 5 1.3326e− 12 1.3917e− 12

Example 2. Consider the following PIDEs [2]

wt(x, t) + wxx(x, t) =

(
−x3 +

(
t2 + 1

)
x2 − (t + 1)2 x + 2 t

)
e−xt + e−tx

x− 1
−
∫ t

0
es−tw(x, s)ds,

with initial and boundary conditions

w(x, 0) = x, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = e−t, t ∈ [0, 1],

The exact solution for this example is w(x, t) = xe−xt.89

In Table 3, we report the L∞, L2 errors and CPU time for different values of M. These results guarantee90

our convergence investigation in section 4. When M increases, the error decreases, and approaches zero. The L∞,91

L2 errors obtained by presented method are compared with Hermite-Taylor matrix method [25] and radial basis92

functions [2] in Table 4. According to Table 4, we can see that our presented method is better than Hermite-Taylor93

matrix method [25] and radial basis functions [2]. Finally, we illustrate the approximate solution and absolute94

error in Figure 2.95

Figure 2. Plot of the approximate solution and absolute value of the error for Example 2.
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5 TEST PROBLEMS 11

Table 5. The L∞ and L2 errors for Example 3.

m M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8
‖E‖2 9.8128e− 2 5.2408e− 3 8.3112e− 4 1.71160e− 5 5.8815e− 6 6.8421e− 7 6.0015e− 8
‖E‖∞ 3.8674e− 1 2.9204e− 2 7.7564e− 3 2.6865e− 4 3.9205e− 5 6.2192e− 6 4.8173e− 7

2 3 4 5 6 7 8

M

-8

-7

-6

-5

-4

-3

-2

-1

L
2
 (

lo
g

1
0
 e

rr
o
rs

)

linear regression

0.886926712099999 - 1.03248915355714t

Figure 3. Plot of the log(L2errors) and the linear regression for Example 3.

Example 3. To show the ability of the proposed method for solving nonlinear PIDEs (1), we consider the
following equation.

wt(x, t) + wxx(x, t) =
∫ t

0
ex+t+sw2(x, s) + f (x, t),

where

f (x, t) =

(
x
(
(cos (t))2 + 2 cos (t) sin (t) + 2

)
ex+2 t − 3 ex+tx− 5 sin (t)

)
x

5
,

with the boundary and initial conditions

w(x, 0) = x, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = cos(t), t ∈ [0, 1],

The exact solution for this Example is given by w(x, t) := x cos(t). Thus, we can easily judge the accuracy and96

convergency of the method.97

Figure 3 illustrates the log(L2errors), taking different values for M. To show the order of convergence, we98

also plotted the linear regression. The slope of this line is equal to the order of convergence (1.03248915355714).99

The numerical values with associated L2 error and L∞ error are tabulated in Table 5. Finally, we illustrate the100

approximate solution and absolute error, taking M = 8 in Figure 4.101

Figure 4. Plot of the approximate solution and absolute value of the error for Example 3.
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5 TEST PROBLEMS 12

Table 6. The L∞, L2 errors, CPU time and order of convergence for Example 4.

m M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9
‖E‖2 3.9186e− 2 1.3828e− 4 9.8169e− 6 3.2073e− 7 1.5216e− 8 3.7417e− 10 1.3539e− 11
‖E‖∞ 6.3472e− 4 7.3752e− 6 2.8966e− 6 7.4561e− 8 3.2107e− 9 1.5876e− 11 2.3226e− 12

CPU time 0.750 1.203 2.547 4.640 8.656 27.703 34.516
Order of convergence - - 1.73646 1.60251 1.51998 1.50915 1.49803

Table 7. Comparison of the L∞ and L2 errors at different times for Example 4.

M=6 M=8 M=10

t L2-error L∞-error L2-error L∞-error L2-error L∞-error
0.1 3.6577e− 8 7.4561e− 8 4.3201e− 11 5.8656e− 11 3.0868e− 14 4.9832e− 14
0.2 8.9209e− 8 1.7000e− 7 1.0306e− 10 1.4755e− 10 7.3013e− 14 1.1669e− 13
0.3 1.4797e− 7 2.6555e− 7 1.7008e− 10 2.4742e− 10 1.2171e− 13 1.9019e− 13
0.4 2.0766e− 7 3.5705e− 7 2.4193e− 10 3.5170e− 10 1.7217e− 13 2.6485e− 13
0.5 2.6816e− 7 4.4936e− 7 3.1506e− 10 4.5674e− 10 2.2295e− 13 3.3922e− 13
0.6 3.3127e− 7 5.4884e− 7 3.8600e− 10 5.6010e− 10 2.7508e− 13 4.1582e− 13
0.7 3.9738e− 7 6.5574e− 7 4.5574e− 10 6.6222e− 10 3.2645e− 13 4.9100e− 13
0.8 4.6191e− 7 7.5670e− 7 5.2929e− 10 7.6617e− 10 3.7527e− 13 5.6141e− 13
0.9 5.1196e− 7 8.1715e− 7 6.0246e− 10 8.7071e− 10 4.2776e− 13 6.3991e− 13
1.0 5.2605e− 7 8.0354e− 7 6.3088e− 10 9.5150e− 10 4.5370e− 13 6.7249e− 13

Example 4. The last example is dedicated to equation

wt(x, t)− wxx(x, t) = f (z, t) +
∫ t

0
3xstew(x,s)ds,

where

f (x, t) :=
−3 t2x cos (sin (x) t) sin (x) + 3 tx sin (sin (x) t)− sin (x) (cos (x)− 1) (cos (x) + 1) (t + 1)

(sin (x))2 ,

and

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = 0, w(1, t) = sin(1)t, t ∈ [0, 1],

Since the closed form of the exact solution to the problem is unavailable, we compute a reference solution by102

picking a large M = 12. The L∞, L2 errors, CPU time and order of convergence are tabulated in Table 6 for103

different values of M. Figure 5 illustrates the approximate solution and absolute error, taking M = 9. Table 7104

shows the L∞, L2 errors at the different times, taking different M.105

Figure 5. Plot of the approximate solution and absolute value of the error for Example 4.
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6 CONCLUSIONS 13

6. Conclusions106

In this paper, an efficient and novel numerical method is applied to solve partial107

integro-differential equations using the pseudospectral method based on Chebyshev cardinal functions.108

Due to the simplicity of using cardinal functions, the presented method is good for solving PIDEs.109

The convergence analysis is investigated and we can show when the number of bases increases, the110

accuracy is also increased. The presented method has applied to solve some numerical tests and111

the results guarantee our convergence investigation and application of the proposed method to this112

problem shows that it performs extremely well in terms of accuracy.113
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