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Abstract: Herein, an efficient algorithm is proposed to solve one dimensional hyperbolic partial1

differential equation. In order to reach an approximate solution of such equation, we employed the2

θ-weighted scheme to discretize the time interval into a finite number of time steps. In each of the3

steps, we have a linear ordinary differential equation. To solve this equation, we utilized the Galerkin4

method based on interpolating scaling functions. Therefore in each time steps, the solution can be5

found as a continuous function. The stability, consistency and convergency of the proposed method6

investigated. Several numerical examples are devoted to show the accuracy and efficiency of the7

method and guarantee the validity of the stability, consistency, and convergence analysis.8

Keywords: Interpolating scaling functions; Hyperbolic equation; Galerkin method9

1. Introduction10

Partial differential equations (PDEs) are ubiquitous in mathematically scientific fields and play an11

important role in engineering and physics. They arise from many purely mathematical considerations,12

such as the calculus of variations and differential geometry. One of the momentous subclasses of PDEs13

is the hyperbolic partial differential equations (HPDEs). HPDEs are used to model many phenomena14

such as biology, industry, atomic physics, aerospace[4,7,11]. Telegraph and wave equations are the15

most famous type of HPDEs that are enforceable in various fields such as random walk theory, wave16

propagation, and signal analysis [7,10].17

In this study, we construct and analyze a numerical algorithm based on the finite difference
method, especially the θ-weighted method, and the Galerkin method is proposed to solve the HPDEs
of form

wt(x, t) + a1wx(x, t) + a2w(x, t) = f (x, t), x ∈ [0, 1], t ∈ [0, T], (1)

with boundary condition
w(0, t) = g(t), t ∈ [0, T], (2)

and initial condition
w(x, 0) = h(t), x ∈ [0, 1]. (3)

Further, we assume that f , g, and h are the known functions, and also a1 and a2 are the real value18

constants.19

In this paper, we attempt to apply an efficient scheme that has not been used before to solve20

such problems. The method includes three steps. In the first step, we use the θ-weighted method21

to broke the time interval into a finite number of time steps. At each time step, we obtain a linear22

ordinary differential equation. In the second step, the ODE obtained from the first step is solved23
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2 INTERPOLATING SCALING FUNCTIONS 2

using the Galerkin method. To do this, interpolating scaling functions are used. In comparison24

to the scaling function arisen from multiresolution analysis (MRA), interpolation scaling functions25

have properties that make them attractive. These characteristics include the flexible zero moments, a26

compact support, orthonormality, and having a closed-form. The most important property of these27

bases is the interpolation. This property is useful to avoid integrals to find coefficients in expansions.28

At the last step, the linear algebraic system obtained from the second one must be solved using an29

appropriate technique. Stability, consistency, and convergence analysis are investigated, and numerical30

tests guarantee the validity of them.31

Numerous studies proposed a variety of numerical and analytical solutions to HPDEs. Doha et32

al. [8] proposed a numerical method based on the collocation method for solving a system consist of33

such equations. In [9], the spectral-Galerkin method is proposed to solve this equation. Singh et al.34

[16] solved one dimensional HPDEs with the initial and boundary conditions, (2) and (3) utilizing a35

algorithm based on Chebyshev and Legendre multiwavelets. Dehghan et al. [5] introduced a numerical36

scheme based on the cubic B-spline scaling functions to solve (1) with nonlocal conservation condition.37

Bin Jebreen et al. [10] proposed an efficient method based on wavelet Galerkin method to solve the38

Telegraph equation, and also the collocation method based on interpolating scaling functions is used39

for solving this equation in [11]. for more study, we refer the readers to [3,6].40

The outline of the remaining part of the paper is as follows. Section 2 is devoted to the brief41

introduction to the interpolating scaling function. Mixed θ-weighted scheme and Galerkin method42

based on interpolating scaling functions is used to solve the desired equation and also the stability,43

consistency and convergence analysis are investigated in Section 3. Section 4 is devoted to some44

numerical examples to show the ability and accuracy of the method.45

2. Interpolating scaling functions46

To derive a set of bases that possess the multiresolution analysis conditions, Alpert et al. [1]
introduced a set of functions that generates the nested spaces {Vr

J }∞
J=0 ∈ L2[0, 1] using piecewise

polynomial bases of degree less than r ≥ 0 (the multiplicity parameter). Considering B := {0, . . . , 2J −
1}, andR := {0, 1, · · · , r− 1}, there is a sequence of nested subspaces that are spanned by

Vr
J := Span{φk

j,b := φk(2jx− k), b ∈ Bj, k ∈ R} ⊂ L2(Ω), r ≥ 0, j ∈ Z+ ∪ {0},

by means of the Interpolating scaling functions (ISFs) {φk}k∈R introduced by Alpert using the Legendre
polynomials {Lk(t)}k∈R of degree r, at the roots {τk}k∈R of Lr(t). Given {ωk}k∈R which are the
Gauss-Legendre quadrature weights [1,11] ISFs are defined as follows

φk(x) =

{ √
2

ωk
Lk(2x− 1), x ∈ [0, 1],

0, o.w.

These bases fulfill the orthonormality relation 〈φk
J,b, φk′

J,b′〉 = δb,b′δk,k′ where 〈., 〉 denotes the L2-inner47

product on Ω := [0, 1].48

Assume that ∪b∈B IJ,b is a uniform finite discretization of Ω. Here the subinterval IJ,b := [xb, xb+1]

are specified by points xb := b/(2J). To project a function into Vr
J , we introduce the orthogonal

projectionP r
J that maps L2(Ω) onto the subspace Vr

J . Utilizing this projection, every function p ∈ L2(Ω)

can be represented in the form
p ≈ P r

J (p) = ∑
b∈BJ

∑
k∈R

pk
J,bφk

J,b. (4)
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3 NUMERICAL METHOD OF SOLUTION 3

Due to the orthonormality of the bases, it is easy to prove that the coefficients pk
J,b can be obtained

by 〈p, φk
J,b〉 =

∫
IJ,b

f (x)φk
J,b(x)dx. To avoid integration, we apply the interpolation property of ISFs

[1,12], via

pk
J,b ≈ 2−J/2

√
ωk
2

p
(

2−J(
τk + 1

2
+ b)

)
, b ∈ BJ , k ∈ R. (5)

Given r-times continuously differentiable function p ∈ Cr(Ω), the projection P r
J (p) is bounded by

means of L2-inner product as

‖P r
J (p)− p‖ ≤ 2−Jr 2

4rr!
sup

x∈[0,1]
|p(r)(x)|. (6)

According to this relation, this projection is convergent when J or r increases. To study more details,49

we refer the readers to [2]. Consequently, this projection is convergent with the rate of O(2−Jr).50

We determine the vector function Φr
J := [Φr,J,0, · · · , Φr,J,2J−1]

T with Φr,J,b := [φ0
J,b, · · · , φr−1

J,b ]

includes the scaling functions and called multi-scaling function. The approximation (4) can be rewritten
using the vector P whose entries are Pbr+k+1 := pk

J,b as follows

P r
J (p) = PTΦr

J , (7)

where P is a vector of dimensional N := r2J .51

To approximate a higher-dimensional function, the building blocks of the bases can be utilized. In
this regards, one can consider the subspace Vr,2

J := Vr
J ×Vr

J ⊂ L2(Ω×Ω) that is spanned by

{φk
J,bφk′

J,b′ : b, b′ ∈ BJ , k, k′ ∈ R}.

In order to derive an approximation of two-dimensional function p ∈ L2(Ω × Ω), we apply the
projection operator P r

J , viz

p(s, t) ≈ P r
J (p)(x, t) = Φr

J
T(x)PΦr

J(t), (8)

where components of the square matrix P of order N are obtained by

Prb+(k+1),rb′+(k′+1) ≈ 2−J
√

ωk′

2

√
ωk
2

p
(

2−J(τ̂k + b), 2−J(τ̂k′ + b′)
)

, (9)

where τ̂k = (τk + 1)/2. If C(2r)(Ω×Ω) 3 p : Ω×Ω→ R, we can show that the error arose from this
approximation can be bounded as follows

‖P r
J p− p‖ ≤ Mmax

21−rJ

4rr!

(
2 +

21−Jr

4rr!

)
, (10)

whereMmax is a constant [12]

Mmax = max

{
sup

ξ∈[0,1)
| ∂r

∂xr p(ξ, y)|, sup
η∈[0,1)

| ∂r

∂yr p(x, η)|, sup
ξ ′ ,η′∈[0,1)

| ∂2r

∂xr∂yr p(ξ ′, η′)|
}

.

3. Numerical method of solution52

The main idea behind the proposed method is based on the θ-weighted scheme and Galerkin53

methods. In the first step, the θ-weighted method is used to discretize the time interval into a finite54

number of time steps. The linear system of ordinary differential equations obtained after the first step55

can be reduced to a system of algebraic equations by using the Galerkin method in the second one.56

So, one can find the approximate solution of the desired equation at the time step points tn := nδt,57

n = 0, . . . , M (tn ∈ [0, T] and T = Mδt).58



3 NUMERICAL METHOD OF SOLUTION 4

To discretize the time variable, a finite difference discretization for (1), the theta weighted
discretization is then

wn+1 − wn

δt
+ θ

(
a1wn+1

x + a2wn+1
)
+ (1− θ) (a1wn

x + a2wn) = f (x, tn) +R, (11)

where for simplicity w(x, t + nδt) is assumed to be wn, for tn = tn−1 + δt (or equivalently tn = nδt),59

and also R ≤ Cδt for a positive constant C and θ ∈ [0, 1] is a constant. Note that by selecting the60

different values for θ, one can find various methods, such as implicit method (θ = 1), explicit method61

(θ := 0), and the Crank–Nicolson method (θ = 1/2).62

Since the remainder term R is a small quantity, one can neglect it and after simplification writes

wn+1 + θδt
(

a1wn+1
x + a2wn+1

)
= wn − (1− θ)δt (a1wn

x + a2wn) + δt f (x, tn), n = 0, . . . , M. (12)

Next, this system of ordinary differential equations would be discretized by the Galerkin method
based on ISFs. To this end, one can approximate the solution wn of (12) using projection operator P r

J ,
via,

wn(x) ≈ P r
J (w

n)(x) = Wn
TΦr

J(x), n = 0, . . . , M, (13)

where Wn, for n = 1, . . . , M is a vector with dimension N which must be found. The same
approximation could be imagined to wn

x , as

wn
x(x) ≈ P r

J (w
n
x)(x) = Wn

T DφΦr
J(x), n = 0, . . . , M, (14)

where Dφ is the operational matrix for derivative introduced in [13–15].63

Replacing (13) and (14) in (12), yields(
Wn+1

T + θδt
(

a1Wn+1
T Dφ + a2Wn+1

T
))

Φr
J(x) =

(
Wn

T − (1− θ)δt
(

a1Wn
T Dφ + a2Wn

T
)
+ δtFT

n

)
Φr

J(x),
(15)

where Fn is a N × 1 vector which is obtained by projecting the function f n into Vr
J , viz

f n ≈ P r
J ( f n)(x) = Fn

TΦr
J(x), n = 0, . . . , M.

Let

AT := (1 + a2θδt)I + a1θδtDφ,

bT := WT
n
(
(1− a2(1− θ)δt)I − a1(1− θ)δtDφ

)
+ δtFT

n , n = 0, . . . , M, (16)

where I is identity matrix of dimension N. By these assumptions and using the fact that the entries of
vector Φr

J(x) are orthonormal bases for Vr
J . So they are linearly independent, and then we have the

following system of a linear system
AWn+1 = b. (17)

To apply the boundary condition (2), it can also be projected into Vr
J , via

wn+1(0) ≈WT
n+1Φr

J(0) = g(tn+1). (18)

Substituting the first row of A and the first element of b by Φr
J(0)

T and g(tn+1), respectively, we obtain
the modified system

ÃWn+1 = b̃. (19)

Now, note that to start the steps, the initial condition should be utilized via

w(x, 0) ≈WT
0 Φr

J(x) = HTΦr
J(x), (20)
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and then W0 = H where H is a vector of dimension N. Utilizing W0 = H, equation (19) gives a system64

of equations at every time steps tn, n = 0, . . . , M.So one can obtain the approximate solution w(x, tn)65

by means of a linear expansion of interpolating scaling function (13).66

3.1. Stability67

To analyze the stability of the time discretization by θ-weighted scheme, assume that ûn+1 is the
approximation solutions of (17). We set en+1 := wn+1− ŵn+1 as the error that arises from the proposed
Galerkin method. Consequently, the roundoff error can be obtained via

(1 + a2θδt)en+1 + a1θδten+1
x = (1− a2(1− θ)δt)en − a1(1− θ)δten

x . (21)

Projecting the error en using P r
J , one can write

en ≈ P r
J (e

n) = ET
n Φr

J . (22)

Inserting (22) into (21) and applying the operational matrix of derivative for ISFs, we get

Φr
J
T AEn+1 = Φr

J
T BEn, (23)

where BT := (1− a2(1− θ)δt)I − a1(1− θ)δtDφ. Provided the matrices A is inverted, it can be shown

En+1 = A−1BEn. (24)

Taking the norm of both sides of (24), and using matrix norm property, we obtain the following
inequality

‖En+1‖ ≤ ‖A−1B‖‖En‖, n = 0, . . . , M. (25)

This gives rise to a sufficient and necessary condition for the stability of the method so that to have68

a stable method, the spectral radius of the matrix A−1B must be less than one (ρ < 1 where ρ is a69

spectral radius of A−1B).70

3.2. Convergence analysis71

Assume that en+1 := wn+1 − ŵn+1. Subtracting (12) from (15) and using the notations in the
previous section, one can write after some simplification

‖En+1‖ ≤ ‖A−1‖‖B‖‖En‖+ ‖A−1‖‖ f n − f̂ n‖, (26)

where f n := f (x, tn) and f̂ n := P r
J ( f n). Due to invertibility of matrix Dφ [1], it is obvious that

C1 := ‖A−1‖ and C2 := ‖B‖ are finite. Therefore, we have

‖En+1‖ ≤ C1

(
C2‖En‖+ ‖ f n − f̂ n‖

)
.

It follows from (6) that ‖En‖ and ‖ f n − f̂ n‖ are bounded and it gives the result that

‖en+1‖ ≤ C1
21−Jr

4rr!
(C2 sup

x∈[0,1]
|wn(r)(x)|+ sup

x∈[0,1]
| f n(r)(x)|). (27)

Note that θ plays an important role in matrices A−1 and B. So the value of the variables C1 and C2 will72

change when the value of θ changes. These variables play a direct role in the error presented in (27).73

We know that a method is consistent if by reducing the mesh (by increase the refinement level J)74

and time step size (δt), the truncation error terms could be made to approach zero. Consequently The75
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4 NUMERICAL RESULTS 6

Table 1. Comparison of L2-error computed using explicit, implicit and Crank–Nicolson mathods with
time step size δt = 0.1/2m−1 for Example 1.

θ m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0 1.18e + 4 4.33e + 6 3.10e + 7 7.57e + 4 2.95 1.22e− 3 1.39e− 4 6.80e− 5 3.39e− 5 1.69e− 5

1/2 3.4e− 2 1.7e− 2 8.5e− 3 4.2e− 3 2.1e− 3 1.0e− 3 5.1e− 4 2.5e− 4 1.3e− 4 8.2e− 5
1 5.8e− 2 2.9e− 2 1.5e− 2 7.3e− 3 3.7e− 3 1.8e− 3 9.0e− 4 4.4e− 4 2.1e− 4 1.1e− 4

inequality (27) confirms that the method is consistent at every time steps when the refinement level J76

or multiplicity r increases.77

If the condition for stability holds (ρ(A−1B) < 1) and if the Galerkin method, used for solving78

the ordinary differential equation at each time, approaches to zero as J → ∞ (indeed the method is79

consistent), we usually find that the solution converges to the exact solution. This derives from Lax80

Equivalence Theorem.81

4. Numerical results82

To illustrate the validity of stability, consistency, and convergence analysis, some numerical tests83

have been considered in this section.84

Example 1. Let us dedicate the first example to the case that the desired equation (1) is of form

wt(x, t) + wx(x, t) + w(x, t) = −2 sin(x + t) + cos(x + t),

with boundary and initial conditions are given by

w(x, 0) = cos(x), x ∈ [0, 1], w(0, t) = cos(t), t ∈ [0, T].

One can find the exact solution that is reported in [9]

w(x, t) = cos(x + t).

Table 1 describes the comparison of L2-error via explicit, implicit and Crank–Nicolson mathods with time85

step size δt = 0.1/2m−1, m = 1, . . . , 10. It is quite obvious that the error tends to zero with increasing m. Table86

3 consist of L2 norm of example 1 at different values of time. The L2-error graph of the explicit, implicit, and87

Crank–Nicolson methods taking different values for J when r = 3 are shown in Figure 3. Figure 4 illustrate the88

approximate solution and absolute error taking r = 5 and J = 2 at time t = 1. Table 4 displays absolute values89

of the error at the selected points by using the presented method taking r = 4, J = 1, θ = 1/2 and δt = 0.1/29.90

The results have been compared with the Legendre wavelets and Chebyshev wavelet collocation method [16],91

and also Bernoulli matrix approach [17]. To confirm the stability condition that we obtained in subsection 3.1,92

Figures 1, 2 and Table 1 are considered. One can observe that when the spectral radius of matrix A−1B is less93

than 1, the proposed method is stable. In view of Figures 1, and 2, the explicit method at m = 10 becomes stable94

while the Crank-Nicolson method is stable from m = 1. We have the same result for the implicit method (θ = 1).95

Example 2. As the second example, let us to consider the HPDEs (1) so that a1 = 1, a2 = 1 and

f (x, t) = (x− t)2,

with boundary and initial conditions are given by

w(x, 0) = x2, x ∈ [0, 1], w(0, t) = t2, t ∈ [0, T].
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4 NUMERICAL RESULTS 7

Table 2. L2 norm of errors taking r = 5, J = 2, θ = 1/2 and δt = 0.1/2m−1 for Example 1.

m θ = 0 θ = 0.5 θ = 1
1 2.74556398 0.99667345 0.95750928
2 1.96489325 0.99446140 0.97722388
3 1.45253127 0.99335639 0.98830702
4 1.16631074 0.99488512 0.99408949
5 1.04801504 0.99716602 0.99704939
6 1.01190091 0.99850952 0.99855537
7 1.00262776 0.99928905 0.99930055
8 1.00046389 0.99965462 0.99965498
9 1.00001839 0.99982309 0.99982817

10 0.99995576 0.99991242 0.99991142

Table 3. L2 norm of errors taking r = 5, J = 2, θ = 1/2 and δt = 0.1/2m−1 for Example 1.

m t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0
2 9.07e− 3 1.50e− 2 1.80e− 2 1.86e− 2 1.71e− 2
4 2.27e− 3 3.74e− 3 4.50e− 3 4.63e− 3 4.24e− 3
6 5.67e− 4 9.34e− 4 1.12e− 3 1.16e− 3 1.06e− 3
8 1.42e− 4 2.34e− 4 2.81e− 4 2.89e− 4 2.65e− 4

10 3.54e− 5 5.84e− 5 7.02e− 5 7.23e− 5 6.63e− 5

Table 4. Absolute values of the error at the selected points taking θ = 1/2 and δt = 0.1/29 for Example
1.

[16](M = M′ = 4) [17](N = 4) Proposed method
(x, t) Legendre wavelets Chebyshev wavelet r = 4, J = 1

(0.1, 0.1) 4.86e− 5 3.0e− 4 3.220e− 5 5.332e− 6
(0.2, 0.2) 2.78e− 4 2.0e− 4 6.650e− 5 6.791e− 6
(0.3, 0.3) 8.64e− 5 1.0e− 4 1.357e− 4 4.366e− 5
(0.4, 0.4) 1.15e− 4 5.0e− 4 1.332e− 4 1.505e− 4
(0.5, 0.5) 1.42e− 4 6.0e− 4 5.200e− 5 1.509e− 4
(0.6, 0.6) 5.40e− 6 2.0e− 4 7.700e− 5 1.992e− 4
(0.7, 0.7) 1.67e− 4 2.0e− 4 1.960e− 4 2.098e− 4
(0.8, 0.8) 2.46e− 4 2.0e− 4 2.428e− 4 2.034e− 4
(0.9, 0.9) 2.29e− 4 1.0e− 4 1.776e− 4 2.119e− 4
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Figure 1. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 0, r = 5, J = 2
and δt = (0.1)/2m for Example 1.
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0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
(x

,0
.5

)

exact solution

approximate solution (m=5)

approximate solution (m=6)

-0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

w
(x

,0
.9

)

exact solution

approximate solution (m=5)

approximate solution (m=6)

Figure 2. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 1/2, r = 5,
J = 2 and δt = (0.1)/2m for Example 1.
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Figure 3. Plot of L2 errors at time t = 1 taking r = 3 and δt = (0.1)/29 for Example 1.

Figure 4. Plot of the approximate solution (left) and L∞ errors (right) taking r = 5 and J = 2 for
Example 1.
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Table 5. L2-error comparison among explicit, implicit and Crank–Nicolson mathods with time step
size δt = 0.1/2m−1 for Example 2.

θ m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0 2.37e + 4 8.67e + 6 6.20e + 7 1.51e + 5 5.88e− 0 2.68e− 3 6.44e− 4 3.21e− 4 1.60e− 4 8.01e− 5

1/2 1.45e− 2 7.25e− 3 3.62e− 3 1.81e− 3 9.06e− 4 4.53e− 4 2.27e− 4 1.13e− 4 5.66e− 5 2.83e− 5
1 2.46e− 2 1.23e− 2 6.13e− 3 3.06e− 3 1.53e− 3 7.65e− 4 3.82e− 4 1.91e− 4 9.55e− 5 4.78e− 5

Table 6. L2 norm of errors taking r = 3, J = 2, θ = 1/2 and δt = 0.1/2m−1 for Example 2.

m t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0
2 3.75e− 3 4.50e− 3 3.97e− 3 4.58e− 3 7.27e− 3
4 9.37e− 4 1.12e− 3 9.91e− 4 1.14e− 3 1.82e− 3
6 2.34e− 4 2.81e− 4 2.48e− 4 2.86e− 4 4.55e− 4
8 5.85e− 5 7.02e− 5 6.20e− 5 7.15e− 5 1.14e− 4

10 1.46e− 5 1.76e− 5 1.55e− 5 1.79e− 5 2.84e− 5

For this example we have the exact solution [16]

w(x, t) = (x− t)2.

Table 5 shows the comparison of L2-error via explicit, implicit and Crank–Nicolson mathods with time96

step size δt = 0.1/2m−1, m = 1, . . . , 10, r = 5 and J = 2. Table 6 consist of L2 norm of example 2 at different97

values of time. Figure 5 illustrate the approximate solution and absolute error taking r = 5 and J = 2 at time98

t = 1. Figure 6 shows the L2-error using explicit method and implicit method taking r = 3 and J = 2 at time99

δt = 0.1/2m−1, m = 1, . . . , 10. Figures 7, 8 and 9 confirm our investigation about stability. Due to stability100

investigation, If the spectral radius of matrix A−1B is not less than 1, the time discretization leads to divergence101

when t increases. To reduce this effect, we must increase the time steps. The results have been compared with the102

Legendre wavelets and Chebyshev wavelet collocation method [16]. It shows that the proposed method offers103

better accuracy using same multiplicity parameter r and refinement level J. In Figure 10, we show the effect104

of refinement level J and time step size δt on absolute error. Also this Figure confirm our investigation about105

consistency.106

5. Conclusions107

This work is devoted to solving the one-dimensional partial differential equation with boundary108

and initial conditions. To this end, the desired equation reduces to an ordinary differential equation109

using the θ-weighted method. This ODE is solved by employing the Galerkin method based on110

the interpolating scaling functions. The stability, consistency, and convergency of the method are111

investigated. The numerical examples are reported to illustrate the accuracy and efficiency of the112

Table 7. Absolute values of the error at the selected points taking θ = 1/2 and δt = 0.1/29 for Example
1.

[16](M = M′ = 4) Proposed method
(x, t) Legendre wavelets Chebyshev wavelet r = 4, J = 1

(0.1, 0.1) 1.03e− 4 2.57e− 4 1.11e− 7
(0.2, 0.2) 9.00e− 6 3.83e− 4 1.09e− 7
(0.3, 0.3) 5.87e− 5 4.38e− 4 5.88e− 7
(0.4, 0.4) 9.94e− 5 2.22e− 5 1.30e− 6
(0.5, 0.5) 1.12e− 4 2.30e− 4 2.58e− 6
(0.6, 0.6) 9.94e− 5 1.38e− 5 7.09e− 7
(0.7, 0.7) 5.87e− 5 3.66e− 4 3.69e− 7
(0.8, 0.8) 9.00e− 6 2.75e− 4 3.73e− 8
(0.9, 0.9) 1.03e− 4 4.01e− 4 2.47e− 7
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5 CONCLUSIONS 10

Figure 5. Plot of the approximate solution (left) and L∞ errors (right) taking r = 5 and J = 2 for
Example 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-5

-4

-3

-2

-1

0

1

L
2
-e

rr
o

r

m=2

m=4

m=6

m=8

m=10

0 0.2 0.4 0.6 0.8 1

t

-5

-4

-3

-2

-1

0

1

L
2
-e

rr
o

r

m=2

m=4

m=6

m=8

m=10

Figure 6. L2-error using explicit method (left) and implicit error (right) taking r = 3 and J = 2 at time
δt = 0.1/2m−1 for Example 2
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Figure 7. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 0, r = 5, J = 2
and δt = (0.1)/2m for Example 2.
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Figure 8. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 1/2, r = 5,
J = 2 and δt = (0.1)/2m for Example 2.
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Figure 9. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 1, r = 5, J = 2
and δt = (0.1)/2m for Example 2.
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Figure 10. Effect of the refinement level J and δt on the absolute error for Example 2.
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5 CONCLUSIONS 12

method. The results show that three parameters are important here, the θ parameter that changes113

the θ-weighted method, the δt parameter that controls the time steps, and the refinement level J.114

The results show that using the proposed method better results are obtained compared to similar115

methods. Among the methods utilized in this paper, the implicit and Crank–Nicolson methods are116

stable methods that need fewer steps than the explicit method to achieve proper accuracy.117
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