Text book: Elementary Linear Algebra with Supplemental Applications, $11^{\text {th }}$ Edition By Howard Anton and Chris Rorres

## Chapter 1

1.1 Introduction to Systems of Linear Equations
1.2 Gaussian Elimination
1.3 Matrices and Matrix Operations
1.4 Inverses and Algebraic Properties of Matrices
1.5 Elementary Matrices and a Method for Finding $A^{-1}$
1.6 More on Linear Systems and Invertible Matrices
1.7 Diagonal, Triangular and Symmetric Matrices
1.8 Matrix transformations (From Definition 1 to the end of example 1 and from page 80 "

A procedure for finding Standard Matrices" to the end of example 4)

## Chapter 2

2.1 Determinants by Cofactor Expansion
2.2 Evaluating Determinants by Row Reduction
2.3 Properties of the Determinants and Cramer's Rule

## Chapter 4

4.1 Real Vector Spaces (Exercise 11 to be solved in the lecture)
4.2 Subspaces (Theorem 4.2.6 is Not included)
4.3 Linear Independence
4.4 Coordinates and Basis (From Definition 1 to the end of the section)
4.5 Dimension (Exercise 7 (d) is solved in the lecture),
4.6 Change of Basis
4.7 Row Space, Column Space and Null space
4.8 Rank, Nullity and the Fundamental Matrix Spaces. (The concept of orthogonal complement is NOT included).

## Chapter 5

### 5.1 Eigenvalues and Eigenvectors

5.2 Diagonalization (From "Geometric and Algebraic Multiplicity" (page 309) to the end of the section is Not included)

## Chapter 6

6.1 Inner Products (An Application of weighted Euclidean Inner Product (page 347), Example 3, Example 8, and Example 9 are Not included)
6.2 Angle and Orthogonality in Inner Product Spaces (From "Orthogonal Complements" (page 359) to the end of the section is Not included)
6.3 Gram-Schmidt Process; QR-Decomposition (From "Coordinates Relative to Orthonormal Bases" -page 366- to page 369 are Not included)

## Chapter 8

8.2 General Linear Transformations (Examples 9, 17, 18 and 19 are not included)
8.4 Matrices for General Linear Transformations (Theorem 8.4.1 and Example 6 are not included)

