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Weekly Objectives

Week 6: Indeterminate Forms and l’Hopital’s Rule and integration
by parts.

The student is expected to be able to:
1 handles with Indeterminate Forms and uses Hopital’s Rule.
2 integrate the functions using integration by parts.
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Indeterminate Forms

Theorem (L’Hopital’s Rule)
Suppose that f and g are differentiable on the interval (a, b),
except possibly at a point c ∈ (a, b) and that g ′(x) 6= 0 on (a, b),
except possibly at c. Suppose further that lim

x→c
f (x)
g(x) has the

indeterminate form 0
0 or ∞∞ and that lim

x→c
f ′(x)
g ′(x) = L(or ±∞).

Then, lim
x→c

f (x)
g(x) = lim

x→c
f ′(x)
g ′(x) .

Remark

The conclusion of the theorem also holds if lim
x→c

f (x)
g(x) is replaced

with lim
x→c−

f (x)
g(x) , lim

x→c+

f (x)
g(x) , lim

x→−∞
f (x)
g(x) or lim

x→+∞
f (x)
g(x) . (In each case,

we must make appropriate adjustment of the hypothesis.)
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Types of indeterminate forms:
1 0

0 or ∞∞
2 ∞−∞ or −∞+∞
3 0.∞ or 0(−∞)
4 00, 1∞, 1−∞ or ∞0

Example 2.1

lim
x→1

√
x

ln x = 0
0

Apply L’Hopital’s rule
lim
x→1

√
x

ln x = lim
x→1

( 1
2
√

x )
( 1

x ) = lim
x→1

x
2
√

x = 1
2
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Example 2.2
1 lim

x→( π
2 )−

2−sec x
3 tan x = −∞

∞

Apply L’Hopital’s rule
lim

x→( π
2 )−

2−sec x
3 tan x = lim

x→( π
2 )−

− sec x tan x
3 sec2 x = lim

x→( π
2 )−

− tan x
3 sec x =

lim
x→( π

2 )−
− sin x

3 = −1
3

2 lim
x→1+

( 3
ln x −

2
x−1) = (∞−∞)

lim
x→1+

3(x−1)−2 ln x
(x−1) ln x = 0

0
Apply L’Hopital’s rule
lim

x→1+

3(x−1)−2 ln x
(x−1) ln x = lim

x→1+

3− 2
x

ln x+(x−1) 1
x

= lim
x→1+

3− 2
x

ln x+1− 1
x

=∞

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)



Outline
Indeterminate Forms and l’Hopital’s Rule.

Integration By Parts

Integration By Parts
It is used to solve integration of a product of two functions using
the formula: ∫

u dv = uv −
∫

v du

1

∫
xexdx , We put, u = x dv = ex dx , Then du = dx v = ex∫
xexdx = xex −

∫
exdx = xex − ex + c

2

π∫
0

x sin x dx , We put u = x dv = sin x dx , Then,

du = dx v = − cos x
π∫

0

x sin x dx = [−x cos x ]π0 +
π∫

0

cos xdx = [−x cos x ]π0 +[sin x ]π0

[(−π cos π)− (−(0) cos 0)] + [sinπ − sin 0] = π
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Integration By Parts: Examples

∫
xex dx = (x − 1)ex + c∫
x2ex dx = (x2 − 2x + 2)ex + c∫
x3ex dx = (x3 − 3x2 + 6x − 6)ex + c
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Integration By Parts: Examples

∫
x cos x dx = x sin x + cos x + c∫
x2 cos x dx = (x2 − 2) sin x + 2x cos x + c∫
x3 cos x dx = (x3 − 6x) sin x + (3x2 − 6) cos x + c∫
x4 cos x dx = (x4− 12x2 + 24) sin x + (4x3− 24x) cos x + c
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Integration By Parts: Examples

∫
x sin x dx = −x cos x + sin x + c∫
x2 sin x dx = (−x2 + 2) cos x + 2x sin x + c∫
x3 sin x dx = (−x3 + 6x) cos x + (3x2 − 6) sin x + c∫
x4 sin x dx = (−x4 +12x2−24) cos x +(4x3−24x) sin x +c
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Integration By Parts: Examples
Evaluate

∫
cos(ln(x)) dx .

Letting: u = ln(x), we have du = 1/x dx .

du = 1
x dx ⇒ x · du = dx .

Since u = ln(x), we can use inverse functions and conclude that
eln(x) = eu ⇒ x = eu. therefore we have that dx = x · du = eu du.∫

cos(ln(x)) dx =
∫

eu cos(u) du

= 1
2eu( sin(u) + cos(u)

)
+ C

= 1
2eln(x)( sin(ln(x)) + cos(ln(x))

)
+ C

= 1
2x
(
sin(ln(x)) + cos(ln(x))

)
+ C .
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