INTEGRAL CALCULUS (MATH 106)

Dr.Maamoun TURKAWI

king saud university

November 15, 2020

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

イロト イヨト イヨト イヨト

Outline

Parametric equations The slope of the tangent line to a parametric curve Arc Length of a Parametric Equations Surface Area Generated By Revolving A Parametric Curve

Parametric equations

2 The slope of the tangent line to a parametric curve

3 Arc Length of a Parametric Equations

Surface Area Generated By Revolving A Parametric Curve

イロト イポト イヨト イヨト

Outline

Parametric equations The slope of the tangent line to a parametric curve Arc Length of a Parametric Equations Surface Area Generated By Revolving A Parametric Curve

Weekly Objectives

Week 12: Arc length and surface area of a parametric equation, and polar coordinates

The student is expected to be able to:

- In Know the definition of parametric equations
- **2** Calculate the slope of the tangent line to parametric curve.
- **③** Calculate arc length of a parametric equations.
- Calculate the surface area generated by revolving a parametric curve.

< ロ > < 同 > < 三 > < 三 >

Parametric equations

To this point we've looked almost exclusively at functions in the form y = f(x) or x = h(y)

It is easy to write down the equation of a circle centered at the origin with radius r.

$$x^2 + y^2 = r^2$$

However, we will never be able to write the equation of a circle down as a single equation in either of the forms above. Sure we can solve for x or y as the following two formulas show

$$y = \pm \sqrt{r^2 - x^2} \qquad \qquad x = \pm \sqrt{r^2 - y^2}$$

but there are in fact two functions in each of these. Each formula gives a portion of the circle.

イロト イヨト イヨト イヨト

Outline Parametric equations

The slope of the tangent line to a parametric curve Arc Length of a Parametric Equations Surface Area Generated By Revolving A Parametric Curve

Parametric equations

$$y = \sqrt{r^2 - x^2}$$
 (top) $x = \sqrt{r^2 - y^2}$ (right side)

$$y = -\sqrt{r^2 - x^2}$$
 (bottom) $x = -\sqrt{r^2 - y^2}$ (left side)

There are also a great many curves out there that we can't even write down as a single equation in terms of only x and y. So, to deal with some of these problems we introduce **parametric** equations.

< ロ > < 同 > < 三 > < 三 >

Parametric equations

Instead of defining y in terms of x, y = f(x) or x in terms of y x = h(y) we define both x and y in terms of a third variable called a parameter as follows,

$$x = f(t)$$
 $y = g(t)$

This third variable is usually denoted by t.

Each value of t defines a point (x, y) = (f(t), g(t)) that we can plot. The collection of points that we get by letting t be all possible values is the graph of the parametric equations and is called the **parametric curve**.

・ロト ・回ト ・ヨト ・ヨト

Parametric equations (Example)

Example 2.1

Sketch the parametric curve for the following set of parametric equations.

$$x = t^2 + t$$
 $y = 2t - 1$ $-2 \le t \le 2$

At this point our only option for sketching a parametric curve is to pick values of t, plug them into the parametric equations and then plot the points. So, let's plug in some t's.

イロト イポト イヨト イヨト

Outline Parametric equations

The slope of the tangent line to a parametric curve Arc Length of a Parametric Equations Surface Area Generated By Revolving A Parametric Curve

Parametric equations (Example)

イロト イヨト イヨト イヨト

臣

Example 2.2

Sketch the parametric curve for the following set of parametric equations.

Outline

$$x = t^2 + t$$
 $y = 2t - 1$ $-1 \le t \le 1$

・ロト ・回ト ・ヨト ・ヨト

The slope of the tangent line to a parametric curve

If C: x = x(t), y = y(t); $a \le t \le b$ is a differentiable parametric curve then the slope of the tangent line to C at $t_0 \in [a, b]$ is:

$$m = \frac{dy}{dx}|_{t=t_0} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}|_{t=t_0}$$

Remark

- The tangent line to the parametric curve is horizontal if the slope equals zero, which means that $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} \neq 0$
- **2** The tangent line to the parametric curve is vertical if $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} \neq 0$

The second derivative is $\frac{d^2y}{dx^2} = \frac{dy'}{dx} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)}$

Example 3.1

Find the slope of the tangent line(s) to the parametric curve given by

$$x = t^5 - 4t^3$$
 $y = t^2$ at (0,4)

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{5t^4 - 12t^2} = \frac{2}{5t^3 - 12t}$$

$$0 = t^5 - 4t^3 = t^3 (t^2 - 4) \qquad \Rightarrow \qquad t = 0, \pm 2$$
$$4 = t^2 \qquad \Rightarrow \qquad t = \pm 2$$

イロト イヨト イヨト イヨト

• at
$$t = -2$$
:
 $m = \left. \frac{dy}{dx} \right|_{t=-2} = -\frac{1}{8}$
• at $t = 2$
 $m = \left. \frac{dy}{dx} \right|_{t=2} = \frac{1}{8}$

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,

Example 3.2

Find the equation of the tangent line to $C: x = t^3 - 3t$, $y = t^2 - 5t$ at t = 2

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{2t-5}{3t^2-3}$$

The slope of the tangent line is $\frac{dy}{dx}|_{t=2} = -\frac{1}{9}$ At t = 2: x = 2 and y = -7The tangent line to C at t = 2 passes through the point (2, -7)and its slope is $-\frac{1}{9}$ therefore its equation is $\frac{y+7}{x-2} = -\frac{1}{9}$

イロト イヨト イヨト イヨト

Example 3.3

Find the points on $C : x = e^t$, $y = e^{-t}$ at which the slope of the tangent line to C equals $-e^{-2}$

$$m = \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-e^{-t}}{e^{t}} = -e^{-2t}$$

$$\Rightarrow m = e^{-2t} \Rightarrow e^{-2t} = -e^{-2} \Rightarrow t = 1.$$

At $t = 1 : x = e^{1} = e$ and $y = e^{-1} = \frac{1}{e}$.
Hence, the point at which the slope of the tangent line to C equals
 $-e^{-2}$ is $\left(e, \frac{1}{e}\right)$

Arc Length of a Parametric Equations

Definition 4.1

If C : x = x(t), y = y(t); $a \le t \le b$ is a differentiable parametric curve ,then its arc length equals

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

イロト イポト イヨト イヨト

Example 4.1

Determine the length of the parametric curve given by the following parametric equations.

$$x = 3\sin(3t)$$
 $y = 3\cos(3t)$ $0 \le t \le 2\pi$

$$\frac{dx}{dt} = 9\cos(3t) \qquad \qquad \frac{dy}{dt} = -9\sin(3t)$$

and the length formula gives,

$$L = \int_{0}^{2\pi} \sqrt{81 \sin^2(3t) + 81 \cos^2(3t)} dt$$

= $\int_{0}^{2\pi} 9 dt$
= 18π

Image: A match the second s

Example 4.2

Determine the length of the parametric curve given by the following set of parametric equations.

$$x = 8t^{\frac{3}{2}}$$
 $y = 3 + (8 - t)^{\frac{3}{2}}$ $0 \le t \le 4$

$$\frac{dx}{dt} = 12t^{\frac{1}{2}} \qquad \frac{dy}{dt} = -\frac{3}{2}(8-t)^{\frac{1}{2}}$$

$$L = \int_0^4 \sqrt{\left[12t^{\frac{1}{2}}\right]^2 + \left[-\frac{3}{2}(8-t)^{\frac{1}{2}}\right]^2} dt = \int_0^4 \sqrt{144t + \frac{9}{4}(8-t)} dt$$

$$= \int_0^4 \sqrt{\frac{567}{4}t + 18} dt = \frac{4}{567} \left(\frac{2}{3}\right) \left(\frac{567}{4}t + 18\right)^{\frac{3}{2}} \Big|_0^4$$

$$= \frac{8}{1701} \left(585^{\frac{3}{2}} - 18^{\frac{3}{2}}\right) = 66.1865$$

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

Surface Area Generated By Revolving A Parametric Curve

If C: x = x(t), y = y(t); $a \le t \le b$ is a differentiable parametric curve ,then the surface area generated by revolving C around the x-axis is

$$SA = 2\pi \int_{a}^{b} |y(t)| \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The surface area generated by revolving C around the y-axis is

$$SA = 2\pi \int_{a}^{b} |x(t)| \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

イロン 不同 とくほど 不同 とう

Example 5.1

Determine the surface area of the solid obtained by rotating the following parametric curve about the x-axis.

$$x = \cos^3 \theta$$
 $y = \sin^3 \theta$ $0 \le \theta \le \frac{\pi}{2}$

We'll first need the derivatives of the parametric equations.

$$\frac{dx}{d\theta} = -3\cos^2\theta\sin\theta \qquad \frac{dy}{d\theta} = 3\sin^2\theta\cos\theta$$
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{9\cos^4\theta\sin^2\theta + 9\sin^4\theta\cos^2\theta} \, d\theta$$
$$= 3\left|\cos\theta\sin\theta\right| \sqrt{\cos^2\theta + \sin^2\theta}$$
$$= 3\cos\theta\sin\theta$$

$$SA = 2\pi \int_0^{\frac{\pi}{2}} \sin^3\theta \left(3\cos\theta\sin\theta\right) \, d\theta$$
$$= 6\pi \int_0^{\frac{\pi}{2}} \sin^4\theta\cos\theta \, d\theta \qquad u = \sin\theta$$
$$= 6\pi \int_0^1 u^4 \, du$$
$$= \frac{6\pi}{5}$$

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,

Example 5.2

Determine the surface area of the object obtained by rotating the parametric curve about the y-axis.

$$x = 3\cos(\pi t)$$
 $y = 5t + 2$ $0 \le t \le \frac{1}{2}$

The first thing we'll need here are the following two derivatives.

$$\frac{dx}{dt} = -3\pi \sin(\pi t)$$
 $\frac{dy}{dt} = 5$

$$\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} = \sqrt{[-3\pi\sin(\pi t)]^2 + [5]^2} = \sqrt{9\pi^2 \sin^2(\pi t) + 25}$$

イロト イポト イヨト イヨト

$$SA = \int_0^{\frac{1}{2}} 2\pi \left(3\cos(\pi t) \right) \sqrt{9\pi^2 \sin^2(\pi t) + 25} \, dt$$

= $6\pi \int_0^{\frac{1}{2}} \cos(\pi t) \sqrt{9\pi^2 \sin^2(\pi t) + 25} \, dt$
 $u = \sin(\pi t) \rightarrow \sin^2(\pi t) = u^2 \qquad du = \pi \cos(\pi t)$
 $t = 0: \quad u = \sin(0) = 0 \qquad t = \frac{1}{2}: \quad u = \sin\left(\frac{1}{2}\pi\right) = 1$
 $SA = 6 \int_0^1 \sqrt{9\pi^2 u^2 + 25} \, du$

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,

$$u = \frac{5}{3\pi} \tan \theta \qquad du = \frac{5}{3\pi} \sec^2 \theta \, d\theta$$
$$\sqrt{9\pi^2 u^2 + 25} = \sqrt{25 \tan^2 \theta + 25} = 5\sqrt{\tan^2 \theta + 1} = 5\sqrt{\sec^2 \theta} = 5 |\sec \theta|$$

$$u = 0: 0 = \frac{5}{3\pi} \tan \theta \qquad \rightarrow \tan \theta = 0 \qquad \rightarrow \qquad \theta = 0$$
$$u = 1: 1 = \frac{5}{3\pi} \tan \theta \qquad \rightarrow \tan \theta = \frac{3\pi}{5} \rightarrow \theta = \tan^{-1}\left(\frac{3\pi}{5}\right) = 1.0830$$

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

æ

$$SA = \int_0^{\frac{1}{2}} 2\pi \left(3\cos\left(\pi t\right)\right) \sqrt{9\pi^2 \sin^2\left(\pi t\right) + 25} \, dt$$

= $6 \int_0^1 \sqrt{9\pi^2 u^2 + 25} \, du$
= $6 \int_0^{1.0830} \left(5 \sec \theta\right) \left(\frac{5}{3\pi} \sec^2 \theta\right) \, d\theta$
= $6 \int_0^{1.0830} \frac{25}{3\pi} \sec^3 \theta \, d\theta$
= $\frac{25}{\pi} \left(\sec \theta \tan \theta + \ln \left|\sec \theta + \tan \theta\right|\right) \Big|_0^{1.0830} = 43.0705$

Dr.Maamoun TURKAWI INTEGRAL CALCULUS (MATH 106)

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,