INTEGRAL CALCULUS (MATH 106)

Dr.Maamoun TURKAWI

king saud university
November 8, 2020
(1) Volume Of A Solid Revolution (Cylindrical shells method)
(2) Arc Length
(3) Area of a Surface of Revolution

Weekly Objectives

Week 11: Area between curves and Volume of a solid revolution.

The student is expected to be able to:
(1) Calculate the volume of a solid revolution using the Cylindrical shells method.
(2) Calculate the arc length.
(3) Calculate the area of a surface of revolution.

Volume Of A Solid Revolution (Cylindrical shells method)

The method of cylindrical shells the cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h. Its volume V is calculated by subtracting the volume V_{1} of the inner cylinder from the volume V_{2} of the outer cylinder:
$V=V_{2}-V_{1}=\pi r_{2}^{2} h-\pi r_{1}^{2} h$
$=\pi\left(r_{2}^{2}-r_{1}^{2}\right) h=\pi\left(r_{2}-r_{1}\right)\left(r_{2}+r_{1}\right) h$
$=2 \pi \frac{r_{2}+r_{1}}{2} h\left(r_{2}-r_{1}\right) \Rightarrow V=2 \pi r h \Delta r$

Volume Of A Solid Revolution (Cylindrical shells method)

let be the solid obtained by rotating about the -axis the region bounded by $y=f(x)$, where $f(x) \geq 0, y=0, x=a$ and $x=b$, where $b>a \geq 0$.

Volume Of A Solid Revolution (Cylindrical shells method)

We divide the interval into n subintervals $\left[x_{i-1}, x_{i+1}\right.$] of equal width and let $\overline{x_{i}}$ be the midpoint of the i th subinterval. If the rectangle with base $\left[x_{i-1}, x_{i}\right]$ and height $f\left(\bar{x}_{i}\right)$ is rotated about the y - axis then the result is a cylindrical shell with average radius \bar{x}_{i} height $f\left(\bar{x}_{i}\right)$ and thickness Δx so its volume is:

$$
V_{i}=(2 \pi) \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

Volume Of A Solid Revolution (Cylindrical shells method)

An approximation to the volume of is given by the sum of the volumes of these shells:

$$
V \approx \sum_{i=1}^{n} V_{i}=\sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

This approximation appears to become better as $n \rightarrow \infty$ But, from the definition of an integral, we know that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x=\int_{a}^{b} 2 \pi x f(x) d x
$$

The volume of the solid, obtained by rotating about the y-axis the region under the curve $y=f(x)$ from a to b, is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \text { where } 0 \leq a<b
$$

The best way to remember the last Formula is to think of a typical shell, cut and flattened as in Figure with radius x, circumference $2 \pi x$, height $f(x)$ and thickness Δx or $d x$:

$$
\int_{a}^{b} \underbrace{(2 \pi x)}_{\text {circumferennce }} \underbrace{[f(x)]}_{\text {height }} d x
$$

Example 2.1

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$
by the shell method, the volume is

$$
\begin{aligned}
V=\int_{0}^{2}(2 \pi x)\left(2 x^{2}-x^{3}\right) d x & =2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x=2 \pi\left[\frac{x^{4}}{2}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =2 \pi\left(8-\frac{32}{5}\right)=\frac{16}{5} \pi
\end{aligned}
$$

Example 2.2

Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.

$$
\begin{aligned}
V & =\int_{0}^{1}(2 \pi x)\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{\pi}{6}
\end{aligned}
$$

Example 2.3

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1.

For rotation about the x-axis we see that a typical shell has radius y, circumference $2 \pi y$, and height $1-y^{2}$. So the volume is

$$
\begin{aligned}
V & =\int_{0}^{1}(2 \pi y)\left(1-y^{2}\right) d y \\
& =2 \pi \int_{0}^{1}\left(y-y^{3}\right) d y \\
& =2 \pi\left[\frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{1}=\frac{\pi}{2}
\end{aligned}
$$

Example 2.4

Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$.
the region and a cylindrical shell formed by rotation about the line $x=2$. It has radius $2-x$, circumference $2 \pi(2-x)$, and height $x-x^{2}$.
$V=\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x$
$=2 \pi\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1}=\frac{\pi}{2}$

Arc Length

Definition 3.1

(1) If $f(x)$ is continuous function on the interval $[a, b]$, then the arc length of $f(x)$ from $x=a$ to $x=b$ is:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

(2) If $g(y)$ is continuous function on the interval $[c, d]$, then the arc length of $g(y)$ from $y=c$ to $y=d$ is:

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Arc Length (Example)

Example 3.1

Determine the length of $y=\ln (\sec x)$ between $0 \leq x \leq \frac{\pi}{4}$
$f^{\prime}(x)=\frac{\sec x \tan x}{\sec x}=\tan x \Rightarrow\left[f^{\prime}(x)\right]^{2}=\tan ^{2} x$
$\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+\tan ^{2} x}=\sqrt{\sec ^{2} x}=|\sec x|=\sec x$
The arc length is then,
$\int_{0}^{\frac{\pi}{4}} \sec x d x=[\ln |\sec x+\tan x|]_{0}^{\frac{\pi}{4}}=\ln (\sqrt{2}+1)$

Arc Length (Example)

Example 3.2

Determine the length of $x=\frac{2}{3}(y-1)^{\frac{3}{2}}$ between $1 \leq y \leq 4$

$$
\frac{d x}{d y}=(y-1)^{\frac{1}{2}} \Rightarrow \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+y-1}=\sqrt{y}
$$

The arc length is then,

$$
L=\int_{1}^{4} \sqrt{y} d y=\left.\frac{2}{3} y^{\frac{3}{2}}\right|_{1} ^{4}=\frac{14}{3}
$$

Arc Length (Example)

Example 3.3

Determine the length of $x=\frac{1}{2} y^{2}$ between $0 \leq x \leq \frac{1}{2}$. Assume that y is positive.
$\frac{d x}{d y}=y \quad \Rightarrow \quad \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+y^{2}}$
Before writing down the length notice that we were given \times limits and we will need y limits. $0 \leq y \leq 1$
The integral for the arc length is then,

$$
L=\int_{0}^{1} \sqrt{1+y^{2}} d y
$$

Arc Length (Example)

$$
L=\int_{0}^{1} \sqrt{1+y^{2}} d y
$$

This integral will require the following trig substitution.
$y=\tan \theta \quad d y=\sec ^{2} \theta d \theta$

$$
\begin{array}{llll}
y=0 & \Rightarrow & 0=\tan \theta & \Rightarrow
\end{array} \theta=0, ~\left(1=\tan \theta \quad \Rightarrow \quad \theta=\frac{\pi}{4} .\right.
$$

$\sqrt{1+y^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}=|\sec \theta|=\sec \theta$

Arc Length (Example)

The length is then,

$$
\begin{aligned}
L & =\int_{0}^{\frac{\pi}{4}} \sec ^{3} \theta d \theta \\
& =\left.\frac{1}{2}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|)\right|_{0} ^{\frac{\pi}{4}} \\
& =\frac{1}{2}(\sqrt{2}+\ln (1+\sqrt{2}))
\end{aligned}
$$

Area of a Surface of Revolution

Let $f(x)$ be a nonnegative smooth function over the interval $[a, b]$. We wish to find the surface area of the surface of revolution created by revolving the graph of $y=f(x)$ around the x-axis as shown in the following figure.

Area of a Surface of Revolution

(1) We'll start by dividing the interval into n equal subintervals of width Δx
(2) On each subinterval we will approximate the function with a straight line that agrees with the function at the endpoints of each interval.
(3) Here is a sketch of that for our representative function using $n=4$

Area of a Surface of Revolution

Now, rotate the approximations about the x-axis and we get the following solid.

The approximation on each interval gives a distinct portion of the solid and to make this clear each portion is colored differently.

Area of a Surface of Revolution

The area of each of these is:

$$
A=2 \pi r l
$$

where,

$$
r=\frac{1}{2}\left(r_{1}+r_{2}\right) \quad \begin{aligned}
& r_{1}=\text { radius of right end } \\
& r_{2}=\text { radius of left end }
\end{aligned}
$$

and I is the length of the slant of each interval.

Area of a Surface of Revolution

We know from the previous section that,

$$
\left|P_{i-1} P_{i}\right|=\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \text { where } x_{i}^{*} \text { is some point in }\left[x_{i-1}, x_{i}\right]
$$

Before writing down the formula for the surface area we are going to assume that Δx is "small" and since $f(x)$ is continuous we can then assume that,

$$
f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right) \quad \text { and } \quad f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)
$$

Area of a Surface of Revolution

So, the surface area of each interval $\left[x_{i-1}, x_{i}\right]$ is approximately,

$$
\begin{aligned}
A_{i} & =2 \pi\left(\frac{f\left(x_{i}\right)+f\left(x_{i-1}\right)}{2}\right)\left|P_{i-1} P_{i}\right| \\
& \approx 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
\end{aligned}
$$

The surface area of the whole solid is then approximately,

$$
S \approx \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

Area of a Surface of Revolution

and we can get the exact surface area by taking the limit as n goes to infinity.

$$
\begin{aligned}
S & =2 \pi \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \\
& =2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

If we wanted to we could also derive a similar formula for rotating $x=h(y)$ on $[c, d]$ about the y-axis. This would give the following formula.

$$
S=2 \pi \int_{c}^{d} h(y) \sqrt{1+\left[h^{\prime}(y)\right]^{2}} d y
$$

Area of a Surface of Revolution (Example)

Example 4.1

Determine the surface area of the solid obtained by rotating $y=\sqrt{9-x^{2}},-2 \leq x \leq 2$ about the x-axis.

$$
\begin{gathered}
S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d y \\
\frac{d y}{d x}=\frac{1}{2}\left(9-x^{2}\right)^{-\frac{1}{2}}(-2 x)=-\frac{x}{\left(9-x^{2}\right)^{\frac{1}{2}}} \\
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\frac{x^{2}}{9-x^{2}}}=\sqrt{\frac{9}{9-x^{2}}}=\frac{3}{\sqrt{9-x^{2}}}
\end{gathered}
$$

Area of a Surface of Revolution (Example)

Here's the integral for the surface area,

$$
\begin{aligned}
& S=2 \pi \int_{-2}^{2} f(x) \frac{3}{\sqrt{9-x^{2}}} d x \\
& S=2 \pi \int_{-2}^{2} \sqrt{9-x^{2}} \frac{3}{\sqrt{9-x^{2}}} d x \\
& =6 \pi \int_{-2}^{2} d x=24 \pi
\end{aligned}
$$

Area of a Surface of Revolution (Example)

Example 4.2

Determine the surface area of the solid obtained by rotating $y=\sqrt[3]{x}, 1 \leq y \leq 2$ about the y-axis.

Solution

$$
\begin{gathered}
S=2 \pi \int_{c}^{d} h(y) \sqrt{1+\left[h^{\prime}(y)\right]^{2}} d y \\
x=h(y)=y^{3} \quad \frac{d x}{d y}=3 y^{2} \\
\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+9 y^{4}}
\end{gathered}
$$

The surface area is then,

$$
\begin{aligned}
& \quad S=2 \pi \int_{1}^{2} h(y) \sqrt{1+9 y^{4}} d y \\
& S=2 \pi \int_{1}^{2} y^{3} \sqrt{1+9 y^{4}} d y \quad u=1+9 y^{4} \\
& =\frac{\pi}{18} \int_{10}^{145} \sqrt{u} d u \\
& =\frac{\pi}{27}\left(145^{\frac{3}{2}}-10^{\frac{3}{2}}\right)=199.48
\end{aligned}
$$

