First Midterm Exam

Question 1: (4 points)
Solve the following problem graphically

$$
\begin{array}{r}
\max z=4 x_{1}+4 x_{2} \\
\text { s.t. } \quad x_{1}+x_{2} \leq 8 \\
-2 x_{1}+3 x_{2} \leq 6 \\
2 x_{1}-x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0 .
\end{array}
$$

Question 2:(9 points)
Use the two phase method to find the optimal solution to the following LP:

$$
\begin{array}{r}
\max z=4 x_{1}+2 x_{2} \\
\text { s.t. } \quad 2 x_{1}+x_{2} \leq 6 \\
x_{1}+x_{2} \geq 4 \\
x_{1}, x_{2} \geq 0 .
\end{array}
$$

Question 3: (7 points)
If the following LP:

$$
\begin{aligned}
& \max z=2 x_{1}+x_{2} \\
& \text { s.t. } \quad 3 x_{1}+x_{2} \leq 15 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

has the optimal solution $z^{*}=11$ at $x_{1}^{*}=4, x_{2}^{*}=3$, and $B V=\left\{x_{1}, x_{2}\right\}$, find the values of Δ such that the optimal solution remains optimal, and find the value of the new solution x_{B}^{*} and z^{*} in each of the following cases.

1. If $b_{1}=15$ is changed to $b_{1}=15+\Delta$.
2. If $c_{2}=1$ is changed to $c_{2}=1+\Delta$.

Question 4: (5 points)
If we have a max problem that has the following region

If $z(x) \geq 0 \forall x \in \Omega$, and the slope of the line $z=c$ equals $-1 / 5$, the slope of L_{1} equals $-2 / 5$ and the slope of L_{2} equals $-3 / 4$.

1. Which point is the optimal bfs.
2. If $z^{*}=40$, find the LP problem.
