M555

First Midterm Exam

Question 1: (4 points)

Solve the following problem graphically

$$\max z = 4x_1 + 4x_2$$

s.t. $x_1 + x_2 \le 8$
 $-2x_1 + 3x_2 \le 6$
 $2x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0.$

Question 2:(9 points)

Use the two phase method to find the optimal solution to the following LP:

$$\max z = 4x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0.$

Question 3: (7 points)

If the following LP:

$$\max z = 2x_1 + x_2$$

s.t. $3x_1 + x_2 \le 15$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

has the optimal solution $z^* = 11$ at $x_1^* = 4$, $x_2^* = 3$, and $BV = \{x_1, x_2\}$, find the values of Δ such that the optimal solution remains optimal, and find the value of the new solution x_B^* and z^* in each of the following cases.

- 1. If $b_1 = 15$ is changed to $b_1 = 15 + \Delta$.
- 2. If $c_2 = 1$ is changed to $c_2 = 1 + \Delta$.

Question 4: (5 points)

If we have a max problem that has the following region

If $z(x) \ge 0 \forall x \in \Omega$, and the slope of the line z = c equals -1/5, the slope of L_1 equals -2/5 and the slope of L_2 equals -3/4.

- 1. Which point is the optimal bfs.
- 2. If $z^* = 40$, find the LP problem.