

King Saud University

Department of Mathematics

Second Semester 1438-1439 H

MATH 352 (Numerical Analysis 1)

Second Midterm Exam

Duration: 2 Hours

Student Name	Student ID	Group Number

Question Number	I	II	111	IV	Total
Mark					

[I] Determine whether the following is True or False. Justify your answer.	[4 Points]	
1. The sequence $p_n = \frac{2}{n^3}$ converges linearly to zero	()

2. x = 0 is a simple root of $f(x) = x^2 - xe^x$

(

)

3. If $f[x_1, x_2] = 4$, $f[x_1, x_2, x_3] = 9$ for $x_1 = 1$, $x_2 = 3$, $x_3 = 5$. Then $f[x_2, x_3] = 1.25$

)

(

(A) Use Newton's method to find a solution accurate to within 10^{-2} for $x^3 - x^2 - 3 = 0$ on [1,2]

(B) Let $f(x) = x^2 - 7$. With $p_0 = 3$ and $p_1 = 2$, find p_3 using

- 1. The Secant method
- 2. The method of False-Position
- 3. Which method gives a better approximation for $\sqrt{7}$

[III] Let f(0) = 1, f(0.3) = 1.546, f(0.6) = 1.954.

[4 Points]

- (a) Find the second Lagrange polynomial interpolating f
- (b) If f(x) = cosx + 2sinx, use the error formula to find an **upper bound** for the error in (a)

[IV] Use the data in the following table for all parts of this question. [7 Points]

x	0.3	0.5	0.7	0.9
f(x)	0.7408	0.6065	0.4965	0.4065

(i) **Approximate** f(0.4) by Newton's Divided Difference Formula using 3 nodes

- (ii) Approximate f'(0.7)
- (iii) **Approximate** f''(0.7) by a second derivative midpoint formula

(iv) If $|f^{(4)}(\xi)| \le 0.8$ for $\xi \in (0.3, 0.9)$, find a bound for the error of the approximation in (iii).