King Saud University
Department of Mathematics
Second Semester 1438-1439 H

MATH 352 (Numerical Analysis 1)
Second Midterm Exam
Duration: $\mathbf{2}$ Hours

Student Name	Student ID	Group Number

Question Number	I	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False. Justify your answer. [4 Points]

1. The sequence $p_{n}=\frac{2}{n^{3}}$ converges linearly to zero
2. $x=0$ is a simple root of $f(x)=x^{2}-x e^{x}$ \square
3. If $f\left[x_{1}, x_{2}\right]=4, f\left[x_{1}, x_{2}, x_{3}\right]=9$ for $x_{1}=1, x_{2}=3, x_{3}=5$. Then $f\left[x_{2}, x_{3}\right]=1.25$
(A) Use Newton's method to find a solution accurate to within 10^{-2} for $x^{3}-x^{2}-3=0$ on $[1,2]$
(B) Let $f(x)=x^{2}-7$. With $p_{0}=3$ and $p_{1}=2$, find p_{3} using
4. The Secant method
5. The method of False-Position
6. Which method gives a better approximation for $\sqrt{7}$
[III] Let $f(0)=1, f(0.3)=1.546, f(0.6)=1.954$.
(a) Find the second Lagrange polynomial interpolating f
(b) If $f(x)=\cos x+2 \sin x$, use the error formula to find an upper bound for the error in (a)
[IV] Use the data in the following table for all parts of this question. [7 Points]

x	0.3	0.5	0.7	0.9
$f(x)$	0.7408	0.6065	0.4965	0.4065

(i) Approximate $f(0.4)$ by Newton's Divided Difference Formula using 3 nodes
(ii) Approximate $f^{\prime}(0.7)$
(iii) Approximate $f^{\prime \prime}(0.7)$ by a second derivative midpoint formula
(iv) If $\left|f^{(4)}(\xi)\right| \leq 0.8$ for $\xi \in(0.3,0.9)$, find a bound for the error of the approximation in (iii).

