King Saud University
Department of Mathematics
Second Semester 1438-1439 H

| Student Name | Student ID | Group Number |
| :--- | :--- | :--- |
|  |  |  |


| Question Number | I | II | III | Total |
| :--- | :--- | :--- | :--- | :--- |
| Mark |  |  |  |  |

[I] Determine whether the following is True or False. Justify your answer.
[8 Points]

1. The absolute error in approximating $p=\sqrt{3}$ by $p^{*}=1.732$ is $10^{-3}$
2. If $x=\frac{5}{6}$ and $y=\frac{7}{11}$, then using 4-digit chopping arithmetic, $x \bigoplus y=1.469$
3. $q^{*}=2.718$ approximates $q=e$ to 4 significant digits
4. The sequence $\alpha_{n}=\frac{n^{2}+4}{n^{3}}$ satisfies that $\alpha_{n}=0+O\left(\frac{1}{n}\right)$
5. The function $F(h)=\frac{\sinh }{h}$ satisfies that $F(h)=1+O\left(h^{2}\right)$
6. Every root of $f(x)=x^{3}-2 x^{2}+x-1$ is a fixed-point of $g(x)=\sqrt[3]{2 x^{2}-x+1}$
[II] Let $f(x)=3 x-2^{x}$
(a) Show that $f$ has a root in $[0,1]$
(b) Determine the number of iterations necessary to solve $f(x)=0$ on $[0,1]$ by the Bisection Method with accuracy $10^{-2}$
(c) Use three iterations of the Bisection Method to approximate the root of $f$ on $[0,1]$
(d) Find a bound for the relative error in (c)
[III] Let $g(x)=\sqrt{\frac{7}{x+2}}$
(a) Prove that $g$ has a unique fixed-point in [1,2]
(b) Use the fixed-point iteration $p_{n}=g\left(p_{n-1}\right)$ to determine a solution for $x^{3}+2 x^{2}-7=0$ on [1,2] with accuracy $10^{-2}$
