

King Saud University

Department of Mathematics

Second Semester 1438-1439 H

MATH 352 (Numerical Analysis 1)

First Midterm Exam

Duration: 2 Hours

Student Name	Student ID	Group Number

Question Number	1	II	111	Total
Mark				

[I] Determine whether the following is True or False. Justify your answer.	[8 Points]	
1. The absolute error in approximating $p = \sqrt{3}$ by $p^* = 1.732$ is 10^{-3}	()

2. If $x = \frac{5}{6}$ and $y = \frac{7}{11}$, then using 4-digit chopping arithmetic, $x \oplus y = 1.469$ ()

3. $q^* = 2.718$ approximates $q = e$ to 4 significant digits	()

4. The sequence
$$\alpha_n = \frac{n^2 + 4}{n^3}$$
 satisfies that $\alpha_n = 0 + O\left(\frac{1}{n}\right)$ ()

5. The function $F(h) = \frac{sinh}{h}$ satisfies that $F(h) = 1 + O(h^2)$ ()

6. Every **root** of $f(x) = x^3 - 2x^2 + x - 1$ is a **fixed-point** of $g(x) = \sqrt[3]{2x^2 - x + 1}$ (

[II] Let $f(x) = 3x - 2^x$ [6 Points]

(a) **Show** that f has a root in [0,1]

(b) **Determine** the number of iterations necessary to solve f(x) = 0 on [0,1] by the Bisection Method with accuracy 10^{-2}

(c) Use three iterations of the Bisection Method to **approximate the root** of f on [0,1]

(d) Find a bound for the relative error in (c)

[III] Let
$$g(x) = \sqrt{\frac{7}{x+2}}$$
 [6 Points]

(a) **Prove** that g has a unique fixed-point in [1,2]

(b) Use the fixed-point iteration $p_n = g(p_{n-1})$ to determine a solution for $x^3 + 2x^2 - 7 = 0$ on [1,2] with accuracy 10^{-2}