King Saud University
Department of Mathematics
Second Semester 1438-1439 H

Final Exam

Duration: 3 Hours

Student Name	Student ID	Group Number

Question Number	I	II	III	IV	V	VI	VII	Total
Mark								

[I] Determine whether the following is True or False. Justify your answer.
[8 Points]

1. If $p_{0}=1$, the sequence $p_{n}=p_{n-1}-\frac{p_{n-1}^{3}-18}{3 p_{n-1}^{2}}$ converges to $\sqrt[3]{18}$ faster than the sequence $p_{n}=\left(\frac{18}{p_{n-1}}\right)^{\frac{1}{2}}$
2. The Newton's method converges quadratically to the root $p=1$ for $f(x)=x^{4}-x^{3}-3 x^{2}+5 x-2$
3. The matrix $\left[\begin{array}{cc}0.04 & 58 \\ 5.3 & -7.1\end{array}\right]$ is well-conditioned
4. If $C=\left[\begin{array}{cc}10 & -4 \\ 5 & 1\end{array}\right]$ then $\boldsymbol{\rho}(\boldsymbol{C})=\mathbf{6}$
()
5. The matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$ is diagonally dominant
6. The sequence $\left(\frac{3}{k^{2}}, \frac{\cos k}{k}, e^{-k}\right)^{T}$ converges to $(0,0,0)^{T}$ as $k \rightarrow \infty$ ()
7. The degree of precision for the quadrature formula $\int_{-1}^{1} f(x) d x=f\left(-\frac{\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)$ is
(a) 1
(b) 2
(c) 3
(d) None of the previous
8. If P_{n} is the Lagrange polynomial with degree 2 which interpolates $f(x)=5^{x}$ using $x=-1,0,1$, then $\boldsymbol{P}_{\boldsymbol{n}}$ approximates $\sqrt{5}$ by
(a) 2.975
(b) 2.236
(c) 14.366
(d) None of the previous
9. If Newton's Forward-Difference formula is used to construct interpolating polynomial of degree 2 to approximate $\boldsymbol{f}(\mathbf{0 . 2 5)}$ for the following data

x	0.1	0.3	0.5
$f(x)$	-0.621	0.067	0.245

Then
(a) $f(0.25) \approx-0.057$
(b) $f(0.25) \approx 0.344$
(c) $f(0.25) \approx 0.75$
(d) None of the previous
4. If $g(0.2)=0.97, g(0.4)=0.92$ and $g(0.6)=0.81$, then the backward-difference formula to approximate $\boldsymbol{g}^{\prime}(\mathbf{0 . 4})$ gives
(a) $g^{\prime}(0.4) \approx 0.75$
(b) $g^{\prime}(0.4) \approx 0.55$
(c) $g^{\prime}(0.4) \approx-0.25$
(d) None of the previous
5. If the Composite Trapezoidal rule is used to compute $\int_{0}^{2} \frac{1}{x+4} d x$ with an error of at most 10^{-5}, then
(a) $n \geq 15$
(b) $n \geq 36$
(c) $n \geq 46$
(d) None of the previous
6. If $M=\left[\begin{array}{cc}1 & 3 \\ -1 & 3\end{array}\right]$, then $\|M\|_{2}$ equals
(a) 2
(b) $\sqrt{2}$
(c) $3 \sqrt{2}$
(d) None of the previous
[III] If $f \in C[a, b]$ and $f(a) f(b)<0$. Prove that the Bisection method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a zero p of f with $p_{n}=p+0\left(\frac{1}{2^{n}}\right)$ [3 Points]
[IV] Approximate $\int_{0}^{2} x^{2} \ln \left(x^{2}+1\right) d x$ with $h=0.5$ using [5 Points]
(a) Composite Simpson's rule
(b) Composite Midpoint rule

$$
\text { [V] Let } A=\left[\begin{array}{ccc}
1.19 & 2.11 & -100 \\
14.2 & -2.40 & 12.2 \\
12.1 & 100 & -99.8
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-46.7 \\
17.9 \\
62.2
\end{array}\right]
$$

(a) Use Gaussian elimination and 3-digit rounding arithmetic with scaled partial pivoting to solve the system $A \mathbf{x}=\mathbf{b}$
(b) The exact solution of the system $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 0.5\end{array}\right]^{T}$. Compute $\|\mathbf{x}-\tilde{\mathbf{x}}\|_{2}$ where $\tilde{\mathbf{x}}$ is the solution in (a)
[VI] Let $A=\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right]$
(a) Show that A is positive definite
(b) Find an $L U$ factorization of A where L is a lower triangular matrix and U is an upper triangular matrix.

$$
\begin{aligned}
& 4 x_{1}+x_{2}-x_{3}=5 \\
& -x_{1}+3 x_{2}+x_{3}=-4 \\
& 2 x_{1}+2 x_{2}+5 x_{3}=1
\end{aligned}
$$

(a) Find the second iteration $\mathbf{x}^{(2)}$ of the Gauss-Seidel method to approximate the solution of the system using $\mathbf{x}^{(0)}=\mathbf{0}$.
(b) Write the Jacobi method for the given system in the matrix form $\mathbf{x}^{(k)}=T_{j} \mathbf{x}^{(k-1)}+\mathbf{c}_{j}$.
(c) Compute $\left\|T_{j}\right\|_{\infty}$.
(d) Does the Jacobi method converge to the solution of the given system for any choice of $\mathbf{x}^{(0)}$? Justify your answer.

