

King Saud University

Department of Mathematics

Second Semester 1438-1439 H

MATH 352 (Numerical Analysis 1)

Final Exam

Duration: 3 Hours

Student Name	Student ID	Group Number

Question Number	I	II	111	IV	V	VI	VII	Total
Mark								

[I] Determine whether the following is True or False. Justify your answer.	[8 Points]
--	------------

1. If $p_0 = 1$, the sequence $p_n = p_{n-1} - \frac{p_{n-1}^3 - 18}{3p_{n-1}^2}$ converges to $\sqrt[3]{18}$ faster than the sequence $p_n = \left(\frac{18}{p_{n-1}}\right)^{\frac{1}{2}}$ ()

2. The Newton's method **converges quadratically** to the root p = 1 for

$$f(x) = x^4 - x^3 - 3x^2 + 5x - 2 \tag{()}$$

3. The matrix
$$\begin{bmatrix} 0.04 & 58 \\ 5.3 & -7.1 \end{bmatrix}$$
 is **well-conditioned** ()

4. If
$$C = \begin{bmatrix} 10 & -4 \\ 5 & 1 \end{bmatrix}$$
 then $\rho(C) = 6$ ()

	[1]	0	-1]		
5. The matrix	0	2	1	is diagonally dominant ()	
	L-1	1	3]		

6. The sequence $\left(\frac{3}{k^2}, \frac{\cos k}{k}, e^{-k}\right)^T$ converges to $(0,0,0)^T$ as $k \to \infty$ ()

[II] Choose the correct answer. [9 Points] 1. The degree of precision for the quadrature formula $\int_{-1}^{1} f(x) dx = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$ is (a) 1 (b) 2 (c) 3 (d) None of the previous 2. If P_n is the Lagrange polynomial with degree 2 which interpolates $f(x) = 5^x$ using x = -1,0,1, then P_n approximates $\sqrt{5}$ by (a) 2.975 (b) 2.236 (c) 14.366 (d) None of the previous

3. If **Newton's Forward-Difference** formula is used to construct interpolating polynomial of degree 2 to **approximate** f(0.25) for the following data

x	0.1	0.3	0.5
f(x)	-0.621	0.067	0.245

Then

(a) $f(0.25) \approx -0.057$ (b) $f(0.25) \approx 0.344$ (c) $f(0.25) \approx 0.75$ (d) None of the previous

4. If g(0.2) = 0.97, g(0.4) = 0.92 and g(0.6) = 0.81, then the **backward-difference** formula to **approximate** g'(0.4) gives

(a) $g'(0.4) \approx 0.75$ (b) $g'(0.4) \approx 0.55$ (c) $g'(0.4) \approx -0.25$ (d) None of the previous

5. If the **Composite Trapezoidal** rule is used to compute $\int_0^2 \frac{1}{x+4} dx$ with an error of at most 10^{-5} , then

(a)
$$n \ge 15$$
 (b) $n \ge 36$ (c) $n \ge 46$ (d) None of the previous

6. If $M = \begin{bmatrix} 1 & 3 \\ -1 & 3 \end{bmatrix}$, then $||M||_2$ equals

(a) 2 (b) $\sqrt{2}$ (c) $3\sqrt{2}$ (d) None of the previous

[III] If $f \in C[a, b]$ and $f(a)f(b) < 0$. Prov	e that the Bisection method generates a sequence	ce
$\{p_n\}_{n=1}^\infty$ approximating a zero p of f with p	$p_n = p + 0\left(\frac{1}{2^n}\right) $ [3 Points]	J

[IV] Approximate $\int_0^2 x^2 ln(x^2 + 1) dx$ with h = 0.5 using

- (a) Composite Simpson's rule
- (b) Composite Midpoint rule

	[1.19	2.11	-100]	$\begin{bmatrix} x_1 \end{bmatrix}$		[-46.7]	
[V] Let <i>A</i> =	14.2	-2.40	12.2 , 2	$\mathbf{x} = x_2 $	and $\mathbf{b} =$	17.9	[5 Points]
	12.1	100	-99.8	$\begin{bmatrix} x_3 \end{bmatrix}$		62.2	

- (a) Use Gaussian elimination and 3-digit rounding arithmetic with scaled partial pivoting to solve the system $A\mathbf{x} = \mathbf{b}$
- (b) The exact solution of the system $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \begin{bmatrix} 1 & 1 & 0.5 \end{bmatrix}^T$. Compute $\|\mathbf{x} \tilde{\mathbf{x}}\|_2$ where $\tilde{\mathbf{x}}$ is the solution in (a)

	[3	-1	0]	
[VI] Let $A =$	-1	2	-1	[5 Points]
	LΟ	-1	3]	

- (a) Show that A is positive definite
- (b) Find an LU factorization of A where L is a lower triangular matrix and U is an upper triangular matrix.

[VII] Consider the system

$4x_1 +$	$x_2 -$	x_3	=	5
$-x_1 + $	$3x_2 +$	x_3	= -	-4
$2x_1 + $	$2x_2 + $	$5x_{3}$	=	1

(a) Find the second iteration $\mathbf{x}^{(2)}$ of the Gauss-Seidel method to approximate the solution of the system using $\mathbf{x}^{(0)} = \mathbf{0}$.

(b) Write the Jacobi method for the given system in the matrix form $\mathbf{x}^{(k)} = T_i \mathbf{x}^{(k-1)} + \mathbf{c}_i$.

(c) Compute $\|T_j\|_{\infty}$.

(d) Does the Jacobi method converge to the solution of the given system for any choice of $x^{(0)}$? Justify your answer.