Math 316 Second Midterm Exam 1440, 1st semester

Name:
ID:

Q1 Prove or disprove each of the following statements:
(a) $\left\|L_{100}\right\|^{2}=\frac{2}{201}$, where L_{n} refers to Laguerre polynomial.
(b) $\left\langle H_{n}, H_{m}\right\rangle=0$ for all $n, m \in \mathbb{N}_{0}, n \neq m$, where H_{n} refers to Hermite polynomial.

Q2 Consider the function f defined by

$$
f(x)=\left\{\begin{array}{cc}
1, & -1 \leq x<0 \\
\frac{1}{2}, & x=0 \\
x, & 0<x \leq 1
\end{array}\right.
$$

and

$$
f(x+2)=f(x), x \notin[-1,1] .
$$

(a) Sketch the function f on the interval $[-3,3]$. What is the period of f ?
(b) Find the Fourier series representation for f.
(c) Find the sum of the Fourier series at $x=-\frac{1}{4}$.
(d) Show that

$$
\frac{\pi^{2}}{8}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

Q3. Consider the identity

$$
(n+1) P_{n+1}(x)+n P_{n-1}(x)=(2 n+1) x P_{n}(x), \quad n \in \mathbb{N}
$$

where P_{n} is Legendre polynomial.
(a) Show that

$$
\begin{aligned}
n\left\|P_{n}\right\|^{2} & =(2 n-1)\left\langle x P_{n-1}, P_{n}\right\rangle \\
n\left\|P_{n-1}\right\|^{2} & =(2 n+1)\left\langle x P_{n}, P_{n-1}\right\rangle
\end{aligned}
$$

(b) Use part (a) to prove

$$
\left\|P_{n}\right\|^{2}=\frac{2}{2 n+1}
$$

Q4 Solve the heat equation

$$
u_{t}=u_{x x}, \quad 0<x<\pi, t>0
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =u(\pi, t)=0, \quad t>0 \\
u(x, 0) & =f(x), \quad 0<x<\pi
\end{aligned}
$$

Good Luck
Eyman Alahmadi

